
2''

L

iZ • ¸

.I

"X" -

"' " 91.
H 64" 239

:' .,. /itii-_ t/ M_ 5/-' >/7

I

• . _1

UNPUBLISHEDPRELIMINARYIIATI

XEROX

HICROFILH

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER

OTS PRICE

$

COLLEGE PARK, MARYLAND

Technical Report TR-64-7

NsG-398 May 1964

NUMERICAL ANALYSIS

IN

RESIDUE NUMBER SYSTEMS

by

George E. Lindamood

Research Programmer

Computer Science Center

Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Master of Arts

1964

ABSTRACT

Recent attempts to utilize residue number systems

in digital computers have raised numerous questions about

adapting the techniques of numerical analysis to residue

number systems. Among these questions are the fundamental

problems of how to compare the magnitudes of two numbers,

how to detect additive and multiplicative overflow, and

how to divide in residue number systems° These three

problems are treated in separate chapters of this thesis

and methods are developed therein whereby magnitude com-

parison, overflow detection, and division can be performed

in residue number systems° In an additional chapter, the

division method is extended to provide an algorithm for

the direct approximation of square roots in residue number

systems. Numerous examples are provided to illustrate the

nature of the problems considered and to show the use of

the solutions presented in practical computations° In a

final chapter are presented the results of extensive trial

calculations for which a conventional digital computer was

programmed to simulate the use of the division and square

iii

root algorithms in approximating quotients and square roots

in residue number systems. These results indicate that,

in practice, these division and square root algorithms us-

ually converge to the quotient or square root somewhat fas-

ter than is suggested by the theory.

iv

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude

to his advisor, Dr. Werner C° Rheinboldt, Director of

the Computer Science Center, University of Maryland,

and to Mr. George Shapiro, Computer Technology Group,

Westinghouse Electric Corporation, for their encourage-

ment, patience, and guidance during the preparation of

this thesis°

A portion of the results presented in this thesis

were obtained under the sponsorship of the Electronic

Technology Laboratory_ Aeronautical Systems Division,

United States Air Force, under Contract Number AF 33

(657)7899. The computational results obtained at the

Computer Science Center, University of Maryland, were

supported in part by the National Aeronautics and Space

Administration under NASA Research Grant NsG 398°

v

TABLE OF CONTENTS

Chapter Page

INTRODUCTION ... 1

A. Residue Number Systems 1

B. Modular Arithmetic Computers 2

C. Problems in Modular Arithmetic

Computer Design 4

I. MAGNITUDE COMPARISON 9

II.

A. Ordering in Residue Number Systems 9

B. Mixed-Radix Notation 14

C. Conversion to Mixed-Radix Notation 30

OVERFLOW DETECTION 50

A. Overflow in Residue Number Systems 50

B. Additive Overflow 53

C. Multiplicative Overflow 60

D. Multiplicative Overflow (continued) 71

vi

Chapter Page

III. DIVISION .. 80

A. Division in Residue Number Systems 80

B. Division Algorithms for Residue
Number Systems 84

C. Floating-Point Arithmetic 105

IV. SQUAREROOTS................................... 116

A. Square Root Calculations in
Digital Computers 116

B. A Square Root Algorithm for
Residue Number Systems 118

C. Floating-Point Operations in a
Residue Number System 139

V. COMPUTERSIMULATION............................ 143

A. Simulation Programs 143

B. Simulation Results 148

CONCLUSION... 152

BIBLIOGRAPHY... 156

vii

LIST OF TABLES

Table

I •

II.

III.

IV.

V•

VI.

VII.

Page

Ordinary Mixed-Radix Notation 38

Two-Sided Mixed-Radix Notation 42

Mixed-Radix Conversion by Stored Table 47

Application of Theorem 3.2:

Sample Division Problem 103

Application of Theorem 4.1:

Sample Square Root Calculation 137

Division Simulation Program Results 145

Square Root Simulation Program Results 147

viii

LIST OF FIGURES

Figure Page

me

II.

III.

Multiplicative Overflow Detection -

Method I 67

Division Algorithm 92

Square Root Algorithm 122

ix

INTRODUCTION

A. Residue Number Systems. Residue number systems,

in which an integer x is represented by its residues

with respect to one or more mutually prime moduli

were known to the ancient Chinese. In
m0' ml'''''mn'

fact, the so-called "Chinese Remainder Theorem" was stated

in a restricted form by Sun-Tsu in the First Century A.D.

(See Dickson [3], pp. 57-64.) In modern terminology, the

Chinese Remainder Theorem can be stated in the following

form:

__If m0,ml,-..,mn

the conqruences

x _ ai (mod mi),

are mutually prime (positive) integers,

i = 0,1,...,n, (0.i)

have a unique simultaneous solution modulo M = m0ml'''mn"

If M. = M/m. and x. is the unique inteqer modulo m.
i i -- i I

x.M. -- i
i i (mod mi), i = 0,1,...,n,

such that

then x satisfies the congruences (0.i) simultaneously

if and onl Z if x is of the form

1

x0M0a0 + XlMla I + ... + Xn nnMa + kM,

where k i__s a__nninteger.

The proof of this theorem can be found in most books on

elementary number theory. (For example, see Hardy and

Wright [i0], pp. 94-95, or Griffin [8], pp. 79-80.)

If x satisfies the congruences (0.i)

ously, and y satisfies the congruences

y _ b. (mod m.), i = 0,1,...,n,
1 1

simultaneously, then it follows from the above theorem

that

if and only if

z _ c _ a0 + b.
1 1 -- l

and that

z _ x ± y (mod M)

(mod m) ,
1

w _ x_y (mod M)

i = 0,1,...,n,

if and only if

w = d. - a0. b_ (mod m.),
1 l l l

i = 0,i, ...,n.

s imultane-

B. Modular Arithmetic Computers. It was the above

property of multiplication in residue number systems

which first prompted Miroslav Valach, Professor in the

Institute of Mathematical Machines, Prague, Czechoslovakia,

3

to suggest a digital computer based on a residue number system.

(See Valach [28] .) In all digital computers then existing_

(1955), multiplication was performed by a technique of

repeated addition and "shifting" which took several times as

long as one addition. Valach and his colleague, Antonin

Svoboda, recognized that, if a residue number system were used

in a "modular arithmetic" computer, multiplication could

be performed as fast as addition, so that the speed of

computation would be increased appreciably for most problems.

At a conference in Darmstadt in 1955, Howard Aiken

and Warren Semon, then Director and Assistant Directo_ respec-

tively, of the Harvard Computation Laboratory, were introduced

to the concept of modular arithmetic computers by Svoboda.

Upon their return to the United States, Aiken and Semon began

their own investigation of the application of residue number

systems to digital computers, and in 1956 they submitted a

report on their work to the Wright Air Development Center,

Wright-Patterson Air Force Base, Ohio. (See Reference [i],

a revised version of that report.) As a result, the United

States Air Force became sufficiently interested in modular

arithmetic computers to support considerable research into

their design and use. Among those funded by the Air Force

for such studies were: Aiken and Semon and their staff at

the Harvard Computation Laboratory (see References [4] and

[ii]); Harvey Garner and his associates at the University

of Michigan (see References [5] - [7], [13], and [18];

Lockheed Missiles and Space Company, Sunnyvale, California

(see References [2], [15], [17], and [27]); Scope, In-

corporated, Falls Church, Virginia (see Reference [19]);

and Westinghouse Electric Corporation, Baltimore, Maryland

(see References [16], [20], and [32]). It was at Westing-

house in 1962 that the author became interested in the

problems involved in adapting residue number systems for

use in modular arithmetic computers and it was there that

he began the investigation which eventually let to this

thesis.

4

C. Problems in Modular Arithmetic Computer Design.

The problems encountered by the investigators of modular

arithmetic computers are of two types: first, those con-

cerned with the "logical" organization of such computers

and the development of the attendant circuitry; and second,

those concerned with the theoretical difficulties in perform-

ing numerical analysis in residue number systems. The prob-

lems of the first type are the usual problems associated with

the design of any new computer, except that using residue

number systems promises several interesting possibilities

for more economical logical design than that in conventional

computers. (An exploration of some of these possibilities

will be the subject of a thesis by Robert L. Beadles which

will be submitted to the University of Pittsburgh in partial

fulfillment of the requirements for the degree of Master of

Science in Electrical Engineering.) The theoretical problems,

on the other hand, are more acute in that, if they are not

solved, modular arithmetic computers will be unable to per-

form several very fundamental operations and therefore will

be incapable of handling a large class of computational

problems.

The purpose of this thesis is to present solutions to

some of these theoretical problems in modular arithmetic

computer design. In particular, this thesis treats the

problems of how to compare the magnitudes of two numbers,

how to detect overflow resulting from addition and multi-

plication, how to divide, and how to take square roots in

residue number systems. In Chapters I - IV below, each of

these problems is discussed in turn. Solutions are given,

along with appropriate proofs, and examples are included

6

to show how the solutions presented would be applied in

practice. To demonstrate further the practical application

of two of these solutions, the division and square root

methods described in Chapters III and IV, respectively,

were "simulated" on an existing computer. The results of

solving "sample" problems requiring the use of these methods

are presented in Chapter V.

It should be noted here that the solutions given in

this thesis are not the only possible ones nor, in most

cases, the only existing ones. Indeed, Svoboda [26] and

Keir, Cheney, and Tannenbaum [15] have suggested methods

of overflow detection other than those given below in

Chapter II, and H. S. Shapiro [21], Rozenberg [18], and

Keir0 Cheneyt and Tannenbaum [15] have suggested division

methods different from that given in Chapter III. How-

ever, the square root algorithm presented in Chapter IV

is the only one yet devised specifically for use in re-

sidue number systems and, for that reason, is superior

to the conventional (Newton-Raphson) method used for

taking square roots on digital computers.

_iso,/specific/mention ShOuld be madeof those men whose

ideas directly influenced the form of the results contained

in this thesis. First, credit for suggesting various facets

of the magnitude comparison methods described in Chapter I

should be given to Garner [7], H.S. Shapiro [22], and

Valach [30]. By using their ideas, it remained only for

the author to combine their methods into a single, systematic

approach and to provide the necessary proofs. Next,

recognition should be given to the author's former super-

visor at Westinghouse Electric Corporation, Mr. George

Shapiro, who suggested using a table of powers of two

(stored within the computer) in performing multiplicative

overflow detection, division, and square root extraction

and who also suggested that quotients and square roots in

residue number systems be approximated by the quotient

of an integer and an integral power of two. By following

these suggestions, it was not too difficult for the author

to work out the overflow detection, division, and square

root procedures given in Chapters II, III, and IV, respec-

tively. Last, credit is due to the author's thesis

advisor, Dr. Werner Rheinboldt, for encouraging the author

to investigate the practical behavior of the division and

square root algorithms by programming the University of

8

Maryland's IBM 7090 computer to simulate modular arithmetic

computers in performing divisions and square root extractions

by these methods. By using these simulation programs,

several thousand "sample" divisions and square root ex-

tractions were completed in a matter of minutes.

Finally, it should be added that, while the algorithms

given in this thesis are rather long and complicated, they

are, to the best of the author's knowledge, the most effi-

cient solutions yet obtained for the problems considered.

That is, judging from estimates of the number of operations

required, these algorithms seem to use less computer time

for their execution than the other existing solutions and

- what is more important when one is designing a computer -

they appear to require no special circuitry for their

implementation, since they rely heavily on "standard"

computer operations such as addition and "bit testing."

Thus, it is the author's hope that these methods for

comparing magnitude, detecting overflow, dividing, ex-

tracting square roots will comprise a contribution to the

adaptation of residue number systems for use in digital

computers and that this thesis will help remove a barrier

in making modular arithmetic computers usable for general

types of computation°

CHAPTERI

MAGNITUDE COMPARISON

A. Ordering in Residue Number Systems. Since most

computer applications involve some use of the order proper-

ties of the real numbers, magnitude comparison is an essential

operation in all digital computers. In conventional digital

computers, magnitude comparison is performed simply by a

sequence of "bit tests" which is the logical equivalent of

the usual method of comparing two integers. (See Theorem 1.2

below.) In modular arithmetic computers, however, magnitude

comparison must be performed in a residue number system

where such operations are not so simple. To show that this

is the case, let us consider several examples.

Given a residue number system with moduli m 3 = 7,

m 2 = 5, m I = 3, and m 0 = 2, suppose we wish to find the

smallest of the three "numbers"

{1,3,o,o} 5,3,1, i}

in this system. (Here the "number"

i0

represents the integer

x _ 3 (mod 7) ;

x - 2 (mod 3) ;

X such that

x -- 4 (mod 5) ;

x -- 1 (mod 2).

From the Chinese Remainder Theorem we know there is exactly

one solution, namely

x = 59,

which satisfies these congruences and the condition

0 4 x < 210 = m3m2mlm0.

Hence, we write

{3, 4, 2, i] _ 59.)

Since each of the residues in the number

fl,3,0,0}

is less than or equal to the corresponding residues in

the other two numbers, we might expect that

{l, 3, o, o}

is the smallest of the three. Our expectatfons are wrong,

however, since

{i, 3, o, o} _ 78

is smaller than

{5, 3, i, i] _ 103,

but not smaller than

{3,4,2,i}_ s9

ii

Next, we might try ordering these three numbers "lex-

icographically; " that is, we might order the numbers by

ordering their "first" residues (those with respect to m3),

then their "second" residues (those with respect to m2),

and so forth. But this ordering would give the result

{l 3,0 0} < (3,4 2,i}<{s 3,l,l}

or equivalently,

78 < 59 < 103,

which is obviously wrong. Similarly, "reverse lexico-

graphic" ordering, in which the "last" residues (those

with respect to m0) are ordered first, would give

fl,3,0,0] < {s 3 i l_ <{3,4,2,i}

or

78 < 103 < 59.

More counter-examples can be found to show that other

ordering schemes on the residues are equally unsuccessful.

To examine another aspect of this problem, let us

consider the numbers

(2,3,i,o} _ {4, o,o,o} {3,4,2,13

in the same residue number system as before. Upon observ-

ing that each of the residues in the first number are ex-

actly one less than the corresponding residues in the

12

last, we might conclude (correctly) that

{2,3, l, 0_ _ 58

represents the "next smaller" integer than

{3,4, 2, i_ _ s9o

(By definition, all numbers in a residue number system

represent integers.) But it is not so obvious from their

residues that

{4,0, 0, 0} _ 60

is the "next number greater" than

{3, 4, 2, i] _ 59

in this system. Furthermore, this problem becomes even

more difficult when we consider the "second number greater"

and so forth.

In our third and final example, suppose we provide

for negative numbers in the above residue number system

by decreeing that all integers x such that

M/2 = 105 < x < 210 = M = m3m2mlm 0

be regarded as representing the negative integers -104

through -i. The rule of correspondence is

x<---> x - M

(That is, we restrict our residue number system to the M

consecutive integers -104 through 105 instead of the

integers

amples.)

numbers

0 through 209 used in the two preceding ex-

Suppose we now wish to determine the signs of the

{4, i, i, i} and {4, 3, 2, i}

in this system; that is, we wish to determine whether these

numbers are greater or less than

{0,0 0,I} i05

in the "old" residue number system. It is not at all clear

from the residues in these numbers that

{4, 1, l, l} _ 151<---->-s9

is negative, while

{4,3,2, I_ _ 53

is positive. Hence, it seems that the residues in a num-

ber cannot even be trusted to tell us whether or not that

number is positive. In fact, about all they can be

trusted to tell us is whether or not the number is zero,

since a number is zero if and only if all its residues are

zero.

13

As these examples clearly show, there is no obvious

ordering scheme for the residues in these numbers which

agrees with the "natural" ordering of the integers repre-

sented or which gives any significant information about

14

the signs of those integers. Therefore, our first problem

is to devise some other method for using the residues in two

numbers in a residue number system to determine which number

represents the larger or smaller integer. The solution we

shall give is based upon a generalization of the "positional

notation" commonly used for the integers themselves.

B. Mixed-Radix Notation.

tics, we may represent any non-negative integer

form

As is well known in mathema-

x in the

by using any integer r >i as a "radix." In referring

to this representation for x, we usually indicate the radix

by using an appropriate adjective, such as "decimal" or

"octal", and mention only the coefficients a. in a given
1

order, say, anan_l ...ala 0. Moreover, if we require those

coefficients to be integers satisfying

0 _ a. < r, i = 0, i,._., n,

then the above representation is unique. (That is, there

is exactly one such representation for every non-negative

integer x.) Clearly_ this representation may be extended

to negative integers by prefixing the entire representation

with a minus sign.

n n-1

x = anr + an__ rl + --- + alr + a 0, (i.i)

15

If y is another non-negative integer satisfying

n n-1

= b r + bn_l r + ... + blr + b 0 , (1.2)Y n

the coefficients b. again being integers such that
1

0 _<b.<r,
1

i = 0, 1,..., n,

then we may compare the magnitudes of x and y by com-

paring their coefficients a. and b.,
1 1

respectively, in

"lexicographic" order. That is, we first compare a and
n

b ; if a = b . we compare a and b ; and so
n n n n-I n-i

forth until either we reach a 0 = b 0 or we find an index j

such that a. _ b.. In the former case, x and y are
3 3

obviously equal. In the latter case, x and y are un-

equal, and if j is the larqest index i such that

a. _ b i, then x > y1
if and only if a. > b..

3 J

Let us now formally summarize these properties of this

notation - commonly called "positional notation" -by

stating two theorems:

Theorem i.i (Uniqueness of Representation) - If the

coefficients a. in expression (i.i)
1

ar___ee inteqers

satisfyinq

a. < r, i = 0,0
1

1 • • . , nl

then the_ are uniquely determined bY x.

16

It follows from this theorem that a. _ b. for some
1 1

index i implies that x _ y, since otherwise a
nan_l---ala 0

and bn n-l'b ..blb 0 would be distinct representations of the

same integer. Hence, x _ y if and only if a. _ b. for
1 1

at least one index i.

Theorem 1.2 (Magnitude Comparison) - I__ff x and y

are unequal non-neqative inteqers satisfyinq (i.i) and

(1.2) respectively, if all a. 's and b. 's are non-
1 1

neqative inteqers less than r, and if j is the larqest

index i such that a i _ hi, then x > y if and onlv i__ff

a. > b .
3 3:

The proofs of these theorems can be obtained quite

easily with the aid of the following lemma:

Lemma I.i - If the coefficients a. in expression
1

(i.i) are inteqers satisfyinq

0 _a.<r,
1

i = 0, 1,..., n.

"-I _ a "-2
rJ > aj_ir3 j_2 r3 + ... + alr + a 0

holds for (i.i) whenever j is anv inteqer such that

0 < j _<n+l.

Since both these theorems and this lemma are widely

known to be true and since their proofs can be found in

numerous books on real analysis, we state them here without

proof. However, we shall soon give these proofs for a more

general notation when we state and prove Lemma 1.2 and

Theorems 1.3 and 1.4.

17

Let us now broaden somewhat the scope of these theorems

by extending them to apply to a more general notation. In

particular, let us replace the radix r in (i.i) with

several radices rn, rn_l,..., r0, all of which are integers

greater than one, and let us rewrite (1.1) in the form

X anrn_irn_ 2 -.-r 0 + an_lrn_2rn_ 3---r 0 + ...

... + alr 0 + a 0,
(1.3)

where the coefficients a. are integers such that
1

0 <_ a. < r., i = 0, i,..., n.
1 1

The representation of the integer x by the coefficients

a. obtained in this manner is called
1

"mixed-rad ix:nota t ion"

in contrast with the "fixed-radix notation" associated with

(l.1) above. This notation has essentially the same pro-

perties as those given in the above lemma and theorems for

fixed-radix notation. Indeed, Lemma 1,1 and Theorems lol

and 1.2 are but restricted versions - for the special case

18

in which al_ the ri'S

leKmla and theorems.

are equal to r - of t_e following

(1.3)

then

Lemma 1.2 - If the coefficients a. in expression
1

are integers satisfying

0 <_a. <r.,
1 1

i = 0, I,..., n,

holds for

rj_irj_2---r 0 > aj_irj_2rj_3-.-r0 + ...

... + alr 0 + a 0

(1.3) whenever j i__ssany inteqer such that

0< j <n+l.

Proof : If 0 < j _ n+l, it follows from the condi-

tions on the coefficients a. that
1

;irj_2...r0 > rj_irj_2...r 0 - 1

(rj_ 1 -1)rj_2rj_3-'-r0 +...

... + (r I -l)r 0 + (r 0 -i)

aj_Irj_2rj_3---r 0 + ...

• .. + alr 0 + a 0.

This is the desired result.

Theorem 1.3 (Uniqueness of Mixed-Radix Representation)

- Und____erthe conditions _iven in Lemma i.__2, th___eecoefficients

a. in expression (1.3) are uniquelv determined by x.

19

Proof: Assume that both (1.3) and

x = Cnrn_irn_2...r 0 + Cn_irn_2rn_3...r0 + ...

... + clr 0 + c o

are expressions for x such that the same radices r.

used in both expressions and such that the a.'s and
l

are non-negative integers less than r. for
l

Assume also that a. _ c. for some index i
l 1

the largest such index. Then,

(c. - aj) ...r 0 + (c - a.)rj ...r 0] rj-lrj -2 j-i 3-1 -2rj-3

+ ... + (cI - al)r 0 + (c O - a O)

are

C.lS

1

i = 0, i,..., n.

and let j be

----X -- X

= O.

Let us now assume without loss of generality that

a. < c..
]]

Then, it follows from the above equation that

rj_irj_2"''r 0 (c. - a)rj ...r 03 J -irj -2

(aj_ 1 - Cj_l)rj_2rj_3...r 0

+ ... + (a I - cl)r 0 + (a 0 - c O)

aj_irj_2rj_3...r 0 + ...

... + alr 0 + a 0,

since the a. 's and c.'s
l l

are non-negative integers.

But this contradicts Lemma 1.2. Therefore, a. = c. must
1 1

hold for i = 0, 1,..., n, which is the desired result.

20

Theorem 1.4 (Magnitude Comparison in Mixed-Radix

Notation) - Le___t x and y be distinct non-neqative

inteqers such that x satisfies (1.3) an___d y satisfies

y = b r .r 0 + b ...r 0 + ...n n-lrn-2 "" n-lrn-2rn-3

... + blr 0 + b 0,
(I .4)

where the r0's are the same in (1.3) an___dd (1.4) an___dd
1

the a.'s an___ddb0_s
1 1

are non-neqative inteqers less than

r0 for i = 001 n.
1

I_!f j is the larqest index i

such that a0 _ b i, then x > y1
if and onlv i__f a. > b..

3 3

Proof: In the light of Theorem

from the assumption that x _ y that

it will be sufficient to show that a0 < b0
3 3

x < y and a > b0 implies x > y.
3 3

1.30 it is obvious

j exists and that

impl ie s

If we assume that

Lemma 1.2 that

a. < b
3

then it follows from

(bu - a)rj ...r 0 _ r ...r 03 J -irj -2 j-lrj -2

> aj_irj_2rj_3---r 0 +

... + alr 0 + a 0

>i (aj_ 1 - bj_l)rj_2rj_3---r 0

+ ... + (a I - bl)r 0

+ (a 0 - bo),

since the a0's and b. _s are non-negative integers.
1 1

21

Therefore,

y -- X

(b. - aj) r 0 + (bj3 rj-lrj -2"'" -i

+ ... + (b I - al)r 0 + (b 0 - a 0)

> 0,

which is equivalent to x < y.

)rj_2rj_3---r 0

Similarly, if a. >b.,
3 3

we need only interchange the

a.'s and b.'s
1 1

in the above expression to obtain x - y

Hence, the proof is complete.

> 0.

As in the fixed-radix notation associated with (1.1),

negative integers may be represented in mixed-radix notation

by placing a minus sign before the entire representation.

However, another representation, in which the minus sign is

replaced by the use of both positive and negative coeffi-

and that the coefficients a.
1

cients, suggests itself.

before that the radices

in (1.3)

But now let the

if r.
1

In particular, let us require as

r. be integers greater than one
1

be integers.

a.'s satisfy
1

ail < ri/2,

is an odd integer, and

- r./2 < a. _< ri/2,1 1

(l.5a)

(l.5b)

if r. is an even integer.1 (There is no reason why we

couldn't have a. satisfyl

- ri./2 _<ai < ri/2

instead of (l.5b) above, when r. is even. If we did
1

this, a few "<" and "<" signs would have to be inter-

changed in Lemma 1.3 and Theorems 1.5 and 1.6 below, but

the lemma and theorems themselves would remain essentially

intact. There is, however, a slight advantage in our using

the restriction (l.5b), but we shall postpone our ex-

planation of it until we have proved Lemma 1.3 below.)

With these new conditions on the coefficients a.,
l

the

notation resulting from (1.3) is called "two-sided

mixed-radix notation. "

22

In order that this new notation retain the desirable

uniqueness and ordering properties of "ordinary" mixed-

radix notation set forth above in Theorems 1.3 and 1.4,

it is necessary to require that at most one of the radices

r. be even. (Since it will soon become necessary fori

those radices to be mutually prime, the restriction of

at most one even radix is a natural one and certainly

retains sufficient generality for our purposes.)

Furthermore, to insure that the numbers representable in

23

two-sided mixed-radix notation are distributed "symmetrically"

about zero, it is also necessary to stipulate that, if any

of the radices is even, it be designated r 0.

We shall now show that integers represented in this two-

sided mixed-radix notation may be compared exactly as in

their "ordinary" positional notation; i.e_____u,by comparing

their "coefficients" in lexicographic order.

Lemma 1,3 - For any inteqer j

0 < j _<n+l,

th____efollowinq inequalities hold for (1.3),

such that

the

and

..., r ar___eeodd),
n

- (rj_lrj_2. • •ro)/2

if r 0 is

provided that

a.'s are integers satisfyinq th.._.._e conditions (1.5a)
1

(l.5b): if r 0 is an even inteqer (and rl,r 2,

< aj_irj_2rj_3---r 0 + ...

•.. + alr 0 + a 0

_< (rj_irj_2...r0)/2;

an odd inteqer (as are rl, r2,.., r)' n '

I aj_irj_2rj_3...r01 + ...

... + lalr01 + la01 < (rj_irj_2---r0)/2.

Proof: To avoid tedious repetition, we shall prove

this lemma and the two theorems following it only for the

case where r 0 is even. For the other case, where

is odd, the proofs are quite similar•

r 0

24

From the conditions

it follows that

(1•5) on the coefficients a, ,
1

--(rj_ir j_2 ° . .r0)/2

= _ [(rj_ 1 -l)rj_2rj_3---r 0

<_

• .. + (r I -l)r 0 + r 0 I /2

aj_irj_2rj_3-o-r 0 + ... + alr 0 + a 0

rj 1 -l)rj_2rj_3---r 0 + ...

... + (r I -l)r 0 + r0_ /2

(rj_irj_ 2.. .r0)/2,

for any integer j such that

0 < j (n+l.

This is the desired result.

W W W

If we required that

- r0/2 (a 0 < r0/2,

when r 0 is an even integer, then the conclusion of the

preceding lemma would be that

- (rj_irj_2. " "r0)/2 aj_irj_2rj_3---r 0 + ...

... + alr 0 + a 0

< (rj_irj_2...r0)/2

25

when r 0

and if x

is even. If this were the case, if

were the integer

then the radices

j = n+l,

- (rj-lrj-2"''r0)/2,

rn, rn_l,... , r 0 would be (barely)

sufficient to determine the two-sided mixed-radix repre-

sentation of x via (1.3), but they would not be suffi-

cient to determine the same representation for I x I"

(That is, an additional radix rn+ 1 would be needed to

determine the two-sided mixed-radix representation for

Ixl") However, if we assume that the conditions (1.5)

hold, then Lemma 1.3 assures us that whenever the radices

rn, rn_l,... , r 0 are sufficient to determine the two-

sided mixed-radix representation of an integer x, they

are also sufficient to determine the same representation

of Ix I (but not conversely).

a 0 satisfy

- r0/2 <a 0 _ r0/2

when r 0 is even.

This is why we prefer that

Theorem 1.5 (Uniqueness of Two-Sided Mixed-Radix

Notation) - Under th___eeconditions (1.5), the two-

sided mixed-radix (inteqer) coefficients a. in (1.3)
1 --

ar___eeuniquely determined b___ x.

26

Proof: Assume that x and its two-sided mixed-radix

coefficients a. satisfy (1.3) and (1.5) respectively.
l

Assume also that x also satisfies

x = c ...r 0 + ...r 0 + ...nrn_lrn_2 Cn_irn_2rn_ 3

... + clr 0 + c O ,

where the same radices r. are used in both the above
l

expression and (1.3), r 0 being even and all other

r.'s
l

odd, and where the c. 's
l

c i! < ri/2,

are integers such that

i=l, 2 ,n,

and

-r0/2 < c o _< r0/2o

It then follows immediately from these conditions on the

a. 's and c. 's that
1 1

la" - c'l_<l l r.-i,i i : 0, 1 n.

Now assume further that a. _ c0
1 l

for some index i

and let j be the largest such index° Then, as in the

proof of Theorem 1.3, we have

(c0 - a)rj ...r 0 + - a .3 J -irj -2 (cj-I j-l)rj-2rj-3 "°r0

+ ... + (c I - al)r 0 + (c O - a0)

= x - x

= 0.

27

=

<

which is clearly a contradiction.

hold for

Assuming (without loss of generality) that

and combining this with the above results gives

rj_irj_2"--r 0

(cj - aj)rj_irj_2...r 0

= (aj_ 1 - Cj_l)rj_2rj_3...r 0 + ...

... + (aI - cl)r 0 + (a0 - Co)

(rj_ 1 -l)rj_2rj_3---r 0 + ...

... + (r I - l)r 0 + (r0-1)

rj_irj_2...r 0 - 1

rj_irj_2.- -r 0,

a 0

3

Hence, a = c. must
1 1

i = 0, i, n, which completes the proof.

Theorem 1.6 (Magnitude Comparison in Two-Sided Mixed-

Radix Notation) - Le____tx an___d y b edistinct inteqers

satisfyin q (1.3) an____d(1.4) respectively, where the

sam___Keradices r. are used in both expressions. Let the
1

in (i 3) satisfy tile conditions (1.5)coefficients ai __ .

in: (1.4)and the coefficients b i __ satisfy the similar

conditions:

bi] < ri/2, i = i, 2,..., n

an__dd

- r0/2 < b 0 _< r0/2,

28

if r 0 i__ssa__nneven inte@er;

bil < ri/2, i = 0, i,..., n,

i_f r 0 i__ssa_D_nod___dinteqer . Le____t j be the larqest index

i such that a. _ b.. Then, x > y i__f an____donlv i__f

a >b..
3 3

Proof: As for Theorem 1.4, the existence of j is

guaranteed by the assumption that x _ y; and as in the

proof of Theorem 1.4, it is sufficient here to show that

a. < b. implies x < y and that a. > b. implies x > y.
J 3 J 3

As in the proof of Theorem 1.5, it follows from the

conditions on the a.'s
l

and b.'s that
l

a i - bil _< r i

Assuming now that

-i, i = 0, i,..., n.

a. < b we have
3 j'

(bj - aj)rj_irj_2...r 0

>i rj_irj_ 2- . .r 0

> rj_irj_2...r 0 - 1

= (rj_ 1 -l)rj_2rj_3---r 0 + ...

--- + (r I -l)r 0 + (r 0 -i)

>i (aj_ 1 - bj_l)rj_2rj_3...r 0 + ...

... + (a I -bl)r 0 + (a 0 -b0).

Hence,

y - x =

(bj - aj)rj_irj_2...r 0 + (bj_ 1 - aj_l)rj_ 2

+ ... + (b I - al)r 0 + (b 0 - a 0)

>0,

which is equivalent to x < y.

29

rj_3---r 0

Similarly, if a. > b., interchanging the a.'s and
3 3

b's in the above expressions gives x - y> _. This
i

completes the proof.

At this point, let us pause to reflect upon what we

have established in these theorems, We have shown (in

Theorems 1.4 and 1.6) that, if we can determine the ("or-

dinary" or two-sided) mixed-radix coefficients of integers

from their residues in a residue number system, then we

can compare the magnitudes of those integers by comparing

their coefficents in lexicographic order - that is, by

"bit testing" in a computer. Furthermore, we have shown

in Lemma 1.3 and Theorem 1.5 that, if we use the two-

sided mixed-radix coefficients of an integer x, we can

determine the sign of x from the sign of its "leading"

(or highest order) non-zero coefficient, since it follows

immediately from that lemma that the signs of x and its

leading non-zero coefficient are identical. Therefore, by

introducing the above mixed-radix notations and by showing

that integers may be uniquely represented and readily com-

pared in these notations, we have reduced - or at least,

transformed - the problem of magnitude comparison and sign

detection in residue number systems to one of converting

integers from their residue representation to their mixed-

radix representation. We now turn our attention to the

"new" problem of performing that conversion.

3O

C. Conversion to Mixed-Radix Notation. In order

to obtain some information about the relationship between

the mixed-radix coefficients for an integer x and the

residues of x_ let us examine (1.3) more closely.

Since all of the terms except the last on the right side

of that equation contain r 0 as a factor, it is immedi-

ately obvious that

x _ a 0 (mod r0).

Therefore, x - a 0 is exactly divisible by r 0 and

xI = (x - a0)/r 0

is an integer. Combining this definition of x I with

(1.3) gives

31

x I = anrn_irn_2...r I + an_irn_2rn_3--.r I + ...

... + a2r I + aI,

from which it is again obvious that

x I- a I (mod r I) .

By continuing in this manner, we may define the integers

x2, x3,..., x n by

X 0

1 (xi-i - ai-l)/ri-l'
i = l, 2,..., n, (i .6)

where x 0 = x. From this definition and from (1.3) it

follows that x. also satisfies
1

X. = ...r. + r +
anrn-lrn-2 l an-lrn-2rn-3"'" i "'"

... + ai+ir i + a i,

for i = 0,i,..., n, so that by definition

x.-- a. (mod r.), i = 0, i,..., n. (1.7)
l l l

If we now assume that the radices rA, r_,..., r ,
U n

are the mutually prime moduli for a residue number system,

then we may use the congruences (1.7) to deduce the

mixed-radix coefficients a. of an integer x from the
1

residue representations of x (= x0), Xl, ..., and Xn in

that number system. That is, from the residues do0, d01,

..., don of x such that

x 0 = x _ d0i
(mod r.), i = 0,1,...,,n,

1

we shall find the_ coefficients a. by calculating the
l

residues of x I, x 2,...,

this, we note first that

and Xn from the d0i's.

a 0 _ d00 (mod r0) ,

since x is congruent to both a 0 and d00 modulo

and since "congruence" is an equivalence relation.

To do

r 0

32

If we now assume slightly more than this, i.e______.,that

a 0 = d00, then it follows immediately from (1.6)

elementary properties of congruences that

r0x I = x - a 0 = x - d00 _ d0i - d00 (mod r.)l (1.8)

where i = 0, i,..., n. But since the radices r. are
1

assumed to be relatively prime, we can eliminate r 0

from (1.8) by defining

mined integer modulo r_
1

r0dli _ d0i - d00

dli to be the uniquely deter-

such that

(mod r.), i = i, 2,..., n.
1

It then follows from this definitions the congruences

(1.8), and the elementary properties of congruences that

x I _ dli (mod r.),1

In particular, we have

i = i, 2,..., n.

a I H dll (mod rl),

a I and d

and the

since x I is congruent to both ll modulo r I.

33

Again, if we assume the slightly stronger condition

that

a I = dll,

we may repeat the above line of reasoning to obtain

rlx 2 _ dli - dll

as in (1.8).

uniquely defined integer modulo r. such that
l

rld2i _ dli- dll (mod

it follows as before that

and that

(mod r.), i = i, 2,..., n,

Furthermore, if we define d2i to be the

r.),i = i, 2,..., n,
1

x 2 _ d2i (mod r.), i = 2, 3,..., n,
1

a2 _ d22 (mod r2).

By again assuming that a 2 = d22, a 3 = d33, etc.

we can repeat this same procedure again and again to oh-

! !

tain d3i s, d4i s, etc. by defining d..31
to be the

unique integer modulo r. such that
1

x = x0 _ d0i
(m0d r.) ,

1
i = 0,10..., n,

and

rj_idji - dj_l, i- dj_l,j_ 1 °(mod ri), (1.9)

for i = j_ j+ui_..._ n ,,and j = i, 2,..., n. If we assume

for some j such that 0 < j _ n that

xj-i -- dj-l,i (mod r.l)' i = j-l, j,..., n,

34

and that

aj-I = dj-l,j-l'

it follows immediately from (1.6), (1.9),

tive primeness of the moduli r. that
1

rj_ix j = xj_ 1 - aj_ 1 -- dj_l, i - dj-l, j-i

-- rj_Idji (mod ri)

and

and the rela-

x. =_ d.. (mod ri),3 31
i = j, j+l,..., n.

Thus0 by using induction on j and applying (1.7), we

obtain the proof of

Theorem 1.7 (Residue to Mixed-Radix Conversion) - If

the residues d.. modulo r. satisfyinq (1.9) are

chosen in such a waz that

d..- a. (mod r.)
ll 1 1

implies that

d, , _--- a0 ,

ll 1
i = 0_i, ..., n,

then the inteqers d00, dll_..., dnn are precisely the

mixed-radix coefficients a^, a.,..., a
U I n

respectively 0

appearinq i__nn(1.3).

Obviously_ the key point in this theorem is that the

congruence of _ii and a i (mod r i) must imply the

stronger condition that d = a for i = O, i, , n
ii i'

35

To guarantee that this is the case, we need only require

that the residues d.. be subject to the same conditions
31

the coefficients Thisas a.. glves
1

dii - ail < r.,1

which when combined with the fact that r. divides (d.. - a0)
1 ii 1

-which is equivalent to

d.. = a° (mod r.) -
ll 1 1

does indeed yield the result that d.. = a..
ll 1

Moreover, it

is clear from this that whether the mixed-radix coefficients

referred to in Theorem 1.7 are the ordinary or two-sided

variety depends entirely upon the restrictions placed on

the residues d...
31

In particular, if we require that the

integers d
ji

(which are, by definition, residues modulo

r.) satisfy
1

0 _< d.. < r., i = O, I, ..., n,
31 i

then the integers d00, dll, .-., dnn
in Theorem 1.7 are

the ordinary mixed-radix coefficients for x. If, on the

other hand, we require that the d°.'s satisfy
31

-r0/2 < d00 _ r0/2,
(l.10a)

d j il < r i/2,
i = 0,i,..., n (1.10b)

if r 0 is even, and

36

when

Idjil < ri/2, i = 0, i,..., n

r 0 is odd, then the integers

(l.10c)

d00, dll,..., dnn are

the two-sided mixed-radix coefficients for x. Thus, by

equating the mutually prime moduli for a residue number sys-

tem with the radices r. of mixed notation and by subject-
1

ing the residues in that system to the same conditions as

those on the mixed-radix coefficients, we can obtain - via

equations (1.6), (1.7), and (1.9) above - either the

ordinary or the two-sided mixed-radix coefficients of an

integer from its residues.

It is interesting to note that, if all the residues

in the residue number system are made to satisfy the con-

ditions (ioi0) which give the two-sided mixed-radix co-

efficients via Theorem 1.7, the modular arithmetic com-

puter using these residues requires only about half as

much circuitry as the one using the non-negative residues

which give the ordinary mixed-radix coefficients. The

reason for this is that the former computer need only

compute with the integers 0 thru M/2 plus a "sign bit"

whereas the latter computer must use all of the integers

0 thru M-I. (M is the product of the moduli.)

To illustrate the conversion algorithm of Theorem 1.7

for ordinary mixed-radix notation, let us reconsider the

first example given at the beginning of this chapter.

(See pp.9-11.) Since the even modulus 2 is used, we

must set r 0 = 2; the other moduli may be indexed arbitrar-

ily, say,

r I = 3, r 2 = 5, and r 3 = 7.

Using the residues given previously for

x = 59, y = 78, and z = 103,

we obtain the ordinary mixed-radix coefficients for

y, and z from their respective sets of residues d .

which are given in Table I.

X,

31

37

The first row in each set of residues in Table I con-

tains the residues d00, d01, d02, d03 of the correspond-

ing integer x, y, or z modulo r0, rl, r2, r 3 respective-

ly. The second row of each set is calculated from the

first in accordance with equation (1.9) and contains the

integers dll , d12 , d13 modulo r l, r 2, r 3 respective -

ly, such that

r0dli _ d0i - d00 (mod r.),l
i = i, 2, 3.

(For instance, for x = 59, the second row in Table I

contains

Table I - Ordinary Mixed-Radix Notation

r 3 = 7 r 2 = 5 r I = 3 r 0 = 2

0

0 1

1

2

3

0

1

0 0 0

1 - 0

m

0

0 1

l u

2

3

2 3

4 3

4 1

4 2

- 1

2

3

4

3

2

3

1

2

n

3

1

4

6

2

3

5

2

3

3

x = 59

y = 78

z = 103

38

39

dll = 4 and= 2, dl2 ,

which satisfy the congruences

2 -dll

2 -d12

2 -d13

respectively.)

=--2-1-- 1

--4-1 _----3

--3-1 --=2

d13 = i,

(mod 3)

(mod 5)

(mod 7) ,

Similarly, the third row of each set is

calculated from the second and the fourth row is calcu-

lated from the third, again by using equation (1.9).

From the "diagonal" entries for x in Table

obtain the ordinary mixed-radix coefficients for

x = a3r2rlr 0 + a2rlr 0 + alr 0 + a 0

= d33r2rlr 0 + d22rlr 0 + dllr 0 + d00

= 1(5-3-2) + 4(3-2) + 2(2) + 1

= 59

or, by using the more concise notation

we have

[a 3, a 2, a I, a 0] = [d33, d22, dll, do0],

x _ [i, 4, 2, i].

Similarly, for y and z we have

y = 2(5-3"2) + 3(3-2) + 0(2) + 0

= 78 _ [2, 3, 0, 0]

and

I, we

x:

z = 3(5-3-2) + 2(3"2) +

= 103 _ [3, 2, 0, i].

0(2) + 1

4O

Now we can compare

1.4: the "leading" coefficients for

unequal, so comparing x, y, and z

their leading coefficients. Since

1<2<3,

we conclude that

[i, 4, 2, i] < [2, 3, 0, 0] < [3, 2, 0, i]

or

x< y< z.

is the smallest of theHence, x = 59 _ _3, 4, 2, i]

three numbers x, y, and z.

x, y, and z by applying Theorem

x, y, and z are all

reduces to comparing

To illustrate the use of two-sided mixed-radix

notation, let us now consider the integers given in the

second example at the beginning of this chapter. (See

pp.ll-12.) For

u = 58_ {2,3,i,o} v = 60_ {4,o,o,0},

and w = 59 _ {3, 4, 2, i],

we must adjust some of the residues so that they all sat-

isfy the conditions (i.i0). This gives

u _ {2,-2,l,0}, v _ f-3,o,o,0},

and w _ _3, -i, -i, i_.

41

The residues

Table II.

v, and w

d , ,

3_
for u, v, and w are given in

The successive rows of residues for each of u,

are obtained exactly as for x, y, and z in

Table I except that the d.. 's in Table II satisfy the
31

conditions (i.i0). Thus, we have

u = d33r2rlr 0 + d22rlr 0 + dllr 0 + do0

= 2(5-3-2) + 0(3-2) - 1(2) + 0

= 58

or, in the more concise notation,

u _ [2, 0, -i, 0] ;

also,

and

V 2(5"3"2) + 0(3"2) + 0(2) + 0

60 "_- [2, O, O, O]

W _--- 2(5-3-2) + 0(3-2) - 1(2) + 1

59 _ [2, 0, -i, I].

Applying Theorem 1.6 to compare u, v, and w, we see

that the first three coefficients for u and w are the

same: 2, 0, -i. Hence, we compare u and w by

Table II - Two-Sided Mixed-Radix Notation

r 3 = 7 r2 = 5 r I = 3 r0 = 2

0

1

2

3

0 1 2

0

0

0

1

2

3

0 1

0 0

0

2

0

0

0

m

0 1

1 -i

-- --i

m 0

3

2

1

3

2

3

-3

2

3

2

3

J

3

1

3

2

u= 58

v = 60

w= 59

42

comparing their last coefficients, 0 and l, respec-

tively, from which we conclude that

[2, 0, -i, 0] < [2, 0, -I, i]

or

u <w.

Similarly, the first two coefficients of v and w are

the same, so we compare v and w by comparing their

third coefficients, 0 and -I, respectively. We get

[2, 0, 0, i] > [2, 0, -I, i]

or

v >w.

43

It might be noted from these examples that a fair

amount of computation is needed to obtain all the resi-

dues d.. necessary to convert an integer from residue
]l

notation to mixed-radix notation. This computation can

be performed most quickly and efficiently in a modular

arithmetic computer if a permanently stored table of

residues is used to "eliminate" the moduli r 0, r I, ...,

rn_ 1 in the congruences (1.9) from which the success-

ive rows of residues d..
31

are calculated. Such a table

consists of the integers s.. such that
]l

s.. = 0, i = 0, i, ..., j,
31

44

and

where

r.s.. =_-
j jl

1 (mod r.) ,
1

i = j+l, j+2,..., n,

j = 0, 1,..., n-1.

The entries s.. in this table are used to calculate the
31

residues d_° from the congruence
]l

d - (dj sj (mod r.) (i.ii)ji - -l,i- dj-l,j-1) -l,i l

which is equivalent to (1.9). (Note, however, that this

table can be used for only one particular ordering of the

moduli r0, rl,..° , r .n
If the moduli are re-indexed, a

different table is required. In practice, though, it is

very doubtful whether more than one "indexing" would ever

be necessary.) Since the calculations required in (i.ii)

can be performed simultaneously for a fixed j and for

i = 00 I,..., n in a modular arithmetic computer, only

one subtraction and one multiplication are needed to

calculate each row of residues d.°
]l

from the preceding

one.
Hence, when the n+l moduli r0, rl,... , r aren

used in the computer, the entire conversion process can

be accomplished with n subtractions and n multi-

plications.

45

To illustrate the use of such a stored table, let

us use the table of residues s.. given in Table III to
3z

convert to two-sided mixed-radix notation the numbers

p e {-3, i, i, i_ and q % _-3,-2,-i, i}

given in the third example at the beginning of this

chapter. (We are now using residues satisfying (i.i0).)

The resulting sets of residues d.. for p and q are
3z

given in Table III. The first rows in those sets are

simply the residues of p and q modulo r0, r I, r 2, r3,

respectively, and the second, third, and fourth rows are

calculated from the first rows by using (i.Ii).

For q = 53 the calculation of the second row is

performed as follows: the residue d00 is subtracted

from each of the residues d00, d01, d02, d03 in the

first row, the four subtractions being performed simul-

taneously and independently with respect to the four

moduli r0, rl, r2, r3, respectively. This gives

0 = 1- 1 (mod 2)

1 = -i- 1 (mod 3)

2 = -2- 1 (mod 5)

3 =- -3- 1 (mod 7).

Next, the residues obtained from these subtractions are

multiplied by the entries s00, s01, s02, s03, in the

46

first row of the stored table, respectively, the multi-

plications being performed simultaneously modulo r 0, r I,

r2, r3, respectively° This gives the residues dl0, dll,

d12 , d13 in the second row:

dl0 = 0 = 0(0) (mod 2)

d = -i -= 1 (-I) (mod 3)
ii

d = 1 - 2(-2) (mod 5)
12

d13 = -2 = 3 (-3) (mod 7) .

Similarly, the third row of residues for q is calcu-

lated from the second row by first subtracting dll from

each of the elements dl0, dll , d12, d13 in the second

row and then multiplying the results by the respective

elements Sl0, Sll, s12, s13 in the second row of the

stored table. Finally, the last row of residues for q

is calculated from the third row by subtracting d22

from each of d20, d21 , d22, d23 and multiplying the

results by the elements s20 , s21 , s22 , s23 , respectively,

in the last row of the stored table of s°. 's. The
31

calculation of the residues d a0 for p = -59 is per-
]l

formed in the same manner.

d . 0

31

Note that, whereas previously in (1.9) the residues

were undefined for i < j, we now have d.. = 0
31

when i < j, which results from setting su. = 0 for
31

Table III- Mixed-Radix Conversion by Stored Table

r 3 = 7 r 2 = 5 rI = 3 r0 = 2

0

1

2

0 1 2

0 -i -2
l

0 0 2

0 0 0

3

S , ,

31

0

1

2

3

0 1 2 3

1 1 1 -3

0 0 0 -2

0 0 0 -3

0 0 0 -2

p = -59

0

1

2

3

0

1

0

0

0

1 2 3

-i -2 -3

-i 1 -2

0 -i 2

0 0 2

q = 53

47

i _< j. We do this merely for the sake of convenience in

performing the above calculations in a computer.

48

The "diagonal" elements d00, d01, d02, d03 ob-

tained in this way are the two-sided mixed-radix co-

efficients for p and

III we have

p=

and

or

q, respectively.

d33r2rlr 0 + d22rlr 0 + dllr 0 + d00

-2(5-3-2) + 0(3-2) + 0(2) + 1

q = 2(5-3°2) - 1(3-2) - 1(2) + i,

p-_ [-2, 0, 0, i] and q _ [2, -i, -i, I].

p andSince the leading non-zero coefficients for

are -2

that p

q

and 2, respectively, we conclude immediately

is negative and q is positive.

Hence, from Table

We have now shown how magnitude comparison can be

performed for integers in residue number systems by cal-

culating the mixed-radix coefficients from the residues of

the given integers and then comparing those coefficients

in lexicographic order. We have also shown how the sign

of an integer can be determined from its leading non-zero

two-sided mixed-radix coefficient. Finally, we have shown

how the calculation of the mixed-radix coefficients from

the residues of an integer can be performed efficiently

in a modular arithmetic computer by using a stored table

of residues. Thus, we have added magnitude comparison

and sign detection to the set of operations which can be

performed readily in a modular arithmetic computer. We

shall now make use of these operations in devising methods

to perform other fundamental operations in these computers.

49

CHAPTERII

OVERFLOWDETECTION

A. Overflow in Residue Number Systems. "Overflow"

is the term designating the situation which occurs when a

digital computer generates a number "too large" for it-

self; that is, when some operation performed by the com-

puter results in a number outside the range of numbers the

computer is designed to handle normally. If overflow

occurs, the computer in some manner "truncates" the num-

ber beyond its range to produce a number which is within

its range and which is used in place of the original one

in subsequent calculations. But since certain important

arithmetic properties of the original number may not be

preserved in this truncation, erroneous answers may re-

sult unless the overflow is detected and the subsequent

calculations are modified accordingly. Therefore, some

means of detecting overflow under program control must

be provided in every digital computer.

50

In "conventional" digital computers using, for example,

N-digit binary numbers, one or more "extra" high-order

digits are built into the register (called the accumulator)

where arithmetic operations take place. When some opera-

tion produces a number requiring more than N digits for

its binary representation, overflow occurs and is detected

immediately by a "carry" into one or more of the extra

digits in the accumulator. Special "transfer-on-overflow"

instructions are used by the computer programmer to test

these high-order digits to determine if it is necessary

to "shift" the number in the accumulator to compensate

for the overflow.

51

In modular arithmetic computers, this situation is

slightly different. Overflow still occurs whenever some

operation produces a number beyond the computer range,

but since all arithmetic operations are performed modulo

M, the product of the modul_ in these computers, no

"carries" are ever generated. For instance, in a mod-

ular arithmetic computer in which the moduli are 2, 3,

5, and 7 and the computer range is the set of all in-

tegers from -104 to 105 inclusive, overflow occurs

when the numbers

{i,-2, 0, 0} _ 78 and _3,-i, -i, I_ _ 59

are added. The "true" sum, 137, of these numbers is out-

side the computer range, so it is "truncated" to give

the unique integer x modulo

puter range and such that

x -- 137

Thus,

M (= 210)

(mod 210).

x _ {-3, 2,-i, i} e -73

within the com-

is the "computed" sum of 78 and 59 in this computer,

which is a most astounding result since we usually expect

the sum of two positive integers to be positive.

52

In general, whenever the sum, difference, or product

of two integers in a modular arithmetic computer lies

outside the computer's range, the "computed" result will

be the unique integer which is within the computer range

and which is congruent modulo M to the "true" sum, dif-

ference, or product. While this form of truncation may

permit the programmer to ignore all overflows and yet ob-

tain the correct results in many cases, it is still often

necessary to know whether or not the computed sum, dif-

ference, or product is exactly equal to the true result.

Therefore, we shall now consider the problem of detecting

overflow in residue number systems. We shall make no re-

strictions on the moduli used (other than those needed

for magnitude and, where applicable, sign detection),but

we shall allow the computer range to be only the integers

M -i

0 through M-I inclusive, the integers - 2 through

M - 1
+ inclusive (where M is odd), or the integers

2

inclusive _where M is even).
2

M
-- + 1 through

2

The reason for restricting ourselves to only three pos-

sible ranges for the computer is that, for a given set of

moduli, the behavior of overflow varies considerably with

the range "_sed. (Also, it is extremely unlikely whether

any range other than these would be useful in a practical

modular arithmetic computer.) Finally, since addition,

subtraction, and multiplication are the only arithmetic

operations which can cause overflow in a modular arith-

metic computer, we shall treat only the detection of

additive overflow (which includes overflow resulting

from subtraction) and multiplicative overflow.

53

B. Additive Overflow. To detect overflow occurring

in addition and subtraction in modular arithmetic com-

puters, we compare the magnitude of the computed sum or

difference with that of one of the (two) addends or that

of the minuend. We determine whether or not overflow has

occurred by checking to see if the computed sum of differ-

ence satisfies the order relations which normally hold

between the true sum or difference and the addends or

minuend. If these relations are not satisfied by the com-

puted result, we conclude that overflow has occurred.

54

For the case in which the computer range consists of

the integers 0 through M-l, we define z and w to

be the computed sum and difference, respectively, of the

integers x and y. We assume that x and y are

within the computer range, as are z and w. Since, by

definition,

z --- x+ y

and since, by the above assumption,

0 _< x+y

(mod M)

< 2M,

it follows immediately that whenever overflow occurs in

addition - that is, x + y _ M - then z is given by

z = x + y-M.

Hence, when overflow occurs, we have

Z <X,

since y is less than M by assumption.

hand, if no overflow occurs, then

On the other

Z = X + y >i X.

Clearly, since the above expressions for z are "sym-

metrical" in x and y, the same relations hold between

z and y.

55

on

Since

In the same manner, it follows from the assumptions

x and y that

- M < x - y < M.

w - x - y (mod M),

it is then clear that w is given by

w= x - y +M

whenever overflow occurs in subtraction - that is, when-

ever x- y <0. Therefore, since y is less than M,

it follows as before that

w > x

whenever overflow occurs. On the other hand, if no over-

flow occurs, then we have

w= x -y _x.

This proves

Theorem 2.1 (Additive Overflow Detection) - In the

residue number system whose ranqe is the set of inteqers

from 0 throuqh M-I inclusive, overflow occurs in

addition if and onl_ i__f the computed su___mmi_ss less than either

of the addends and overflow occurs in subtraction if and

only if the computed difference is greater than the minuend.

WW*

For example, in the residue number system based on the

moduli 2, 3, 5, and 7 and whose range is 0 through

209, we detect overflow in the addition and subtraction

of

and

x = 91 _ {0, i, is 13

y : 127_ {1,2,l,11

by noting that their sum

is less than

ference

X

f _

(and less than y) and that their dif-

w=174 _ {6,4,0,0}

is greater than x. As before, we perform these compari-

sons by converting z, w, and x to mixed-radix notation

and comparing their mixed-radix coefficients as prescribed

in Theorem 1.4:

z _ [0, i, i, 0]

x _ [5, 4, 0, 0]

< [3, 0, 0, i] _ x;

> [3, 0, 0, I] _ x.

56

57

For the case where M is an odd integer and the

M- 1 M- 1

computer range is - _ through + 2 inclusive,

we may consider overflow in addition and subtraction

simultaneously by regarding the subtraction of y

x as the addition of (-y) to x, x and y

integers within the computer range.

z to be the computed sum of x and

the computed difference of x and

Now, if x and y have opposite signs or if either is

zero, overflow is impossible since

x and y

But, if x

the assumptions on the computer range that

0 <x + y <M,:

so that overflow occurs whenever

from

both being

Therefore, we define

y, or equivalently,

y', where y' = -y.

M/2 < x + y <M.

is also within the computer range -

(mod M), (2.2)

and therefore must be within the computer range.

and y are both positive, then it follows from

Hence, when x

Since z

-M/2 <z <M/2

and since, by definition,

z m x + y

it follows that

that is,

(2 .i)

-M/2 < z = x + y - M <0.

and y are both positive and overflow

x + y must lie between

is negative.occurs, z

negative and overflow occurs,

(2.1), (2.2)s and

-M < x + y <-M/2

imply that

Similarly, if x and y are both

z must be positive since

0 < z = x + y + M <M/2.

58

M

For the case where the computer range is - 2 + 1

M

through 2 , we may reason almost exactly as we have done

immediately above, except that we must provide for the case

where y' = M/2. We do this simply by regarding the subtrac-

tion of M/2 as the addition of

give the same computed result.

that overflow is impossible whenever

opposite signs or whenever either is zero.

are positive, then from

0 < x _ M/2, _0 < y _M/2,

and (2.2) it follows that

and

M/2 <x + y _<M

x and y

If

if overflow occurs.

and overflow occurs,

M/2 since both operations

Then, it follows as before

have

x and y

-M/2 < z _M/2,

Z = X + y - M

Hence, if both x and y are positive

z will be negative or zero. Similarly_

if

-M/2 < x < 0

If overflow occurs, then

- M < x + y _<-M/2,

so that

x and y are both negative, then

and

z = x +y+M.

Therefore, if overflow occurs when both

negative, z is positive.

-M/2 <y <0.

x and y are

59

Now let us consider what happens if x

the same sign and overflow does no____toccur.

occurs, then z is simply the true sum of x

hence_ z has the same sign as both x and

and y have

If no overflow

and y and

y, regardless

of the computer range. This completes the proof of

Theorem 2.2 (Additive Overflow Detection) - If the

M - 1

computer ranqe is the set of inteqers - 2 throuqh

M - 1 M M

+ 2 o__r 2 + 1 through 2 inclusive, then over-

flow occurs in addition if and onl Z if both summands are non-

zero and have the same si__q_ while their computed sum is zero

or has the opposite siqn.

computer range

For example, using the moduli _, 3, 5, and 7

M M

- 2 + 1 = -104 through 2

and the

105

60

in our residue number system, we detect overflow in the

addition of the integers

x = 83 _ _-i, -2, -i, i_

and

y = 71 _ [i, i,-i, l_

by noting that both are positive while their computed sum

{0,-1,i,05

is negative. We determine the signs of x, y, and z from

the signs of their leading two-sided mixed-radix coefficients:

x _ [3, -i, -i, i] ; y _ [2, 2, -i, i] ;

z _ [-2, i, -i, 0] .

This completes our treatment of additive overflow

detection. We turn now to the problem of detecting over-

flow in multiplication in residue number systems.

C. Multiplicative Overflow. Detecting multiplicative

overflow in modular arithmetic computers is somewhat more

difficult than detecting additive overflow, primarily

because the numbers generated in multiplication may be

"farther" outside the computer range than those generated

in addition. That is, if K is the largest of the abso-

lute values of the integers within the computer range, then

61

the absolute value of the true sum of two numbers in the

computer cannot exceed 2K, while the absolute value of their

K2true product may be as large as . Therefore, the re-

lationship between their true and computed products is, in

general, more complex than that between their true and com-

puted sums. However, it turns out that the technique of

comparing the sign and magnitude of the computed result with

those of the operands, as was done above to detect additive

overflow, can still be used in many instances to detect

multiplicative overflow.

If z

y in some residue number system, then

if and only if at least one of x and y are zero.

if z = 0, multiplicative overflow has occurred if

is the computed product of the integers x and

z should be zero

y are both non-zero. And if

Ixl) 1 and ly I >i l,

Iz IxlandIz1 lYl
then both

Hence,

x and

Therefore, if either of

holds for x and y non-zero, then multiplicative overflow

should be true, at least so long as no overflow has occurred.

62

must have occurred.

sign, then z

opposite signs,

also indicated by the presence of the "wrong" sign on

Furthermore, if x and y have the same

should be positive; and if x and y have

z should be negative. Hence, overflow is

z.

But while these tests are sufficient to detect multi-

plicative overflow, they are not necessary.

example, consider the multiplication of 16

residue number system with moduli

either the range 0 through 209

105.) Therefore, we must find a method for detecting multi-

plicative overflow when the above sign and magnitude tests

do not indicate that overflow has occurred.

ascertain whether or not

fxl.lyl> K
where K

within the computer range, when

and when both

0 < ix[_< is[<_ K and 0 <

are satisfied. To do this, we shall compare

with the (positive) square root of K.

(For a counter-

by itself in the

2, 3, 5, and 7 and with

or the range -104 through

z has the "proper" sign

is the maximum absolute value of the integers

That is, we must

let

k be the unique positive integer such that

(2.3)

Let

k 2 (K <(k+l)2,

d be the non-negative integer such that

k 2 + d = K, (2.4)

Ix I >_ ly I, We mayand let us assume for convenience that

k by defining the integers acompare Ixl and ly I with

Then, if

implies

and b by

a = Ixl - k and b = ly 1

a _< 0, b must also be <_ 0

a >, b. In that case, we have

Ixl.lyl : (k+a,.(k+b) _ k 2 _< K,

which means that overflow does not occur.

b > 0, then a > 0 also and we have

2

Similarly, if

> K,

which is precisely the condition for overflow.

if a

both

and if

Therefore,

40, there can be no multiplicative overflow since

Ixl and ly I are less than the square root of K;

b > 0, there must be overflow because both Ixl and

are greater than the square root of K.

63

To determine whether or not overflow occurs when

a > 0 and b _ 0 (which is the remaining case), let us

examine the equation

Ix. Yl

Substituting K - d for

Ix,yl = K - d + (a + b)k + ab

from which it follows that overflow occurs -

x.y I > K - if and only if

(a + b)k + ab > d.

But since we are assuming that

(a + b)k + ab _<(a + b)k,

so that if a <_Ibl, then

(a + b)k + ab _<(a + b)k (0 (d.

Combining this result with (2.6), we conclude that

implies that overflow does not occur.

= Ixl° ly I = (k + a).(k + b)

= k 2 + (a + b)k + ab.

2
k in this equation gives

that is,

(2.6)

a > 0 >Ib, it follows that

64

Finally, if

we add

(2.5)

(a + b)k + ab ÷ b 2 =

which, when combined with

a > IbJ, (which is now the only _emaining case)_

b 2 to both sides of (2.6) and apply the definitions

to the left side of the result. This gives

(a + b),(k + b)

+ b)ly I,(a

(2.6), yields the conclusion that

overflow occurs if and only if

2
(a + b)°ly I >d + b

Now, if no overflow occurs in multiplying (a + b) lyl

65

we can readily compare (a + b).Jyl with d + b 2 to determine

conclusively whether or not overflow occurs in calculating xy.

On the other hand, if (a + b). I y J overflows, then it follows

from (2.6) that Ix ° Yl must also overflow (and hence that

xy overflows)• These conclusions stem from the inequalities

and

o .<Ibl: -b : k -IYl <k

(a + b).lyl>K : d + k2> d + b 2,

which follow from our definitions.

a>Ibl

plying

multiplying

define x I by

Therefore, if all other tests are inconclusive and if

and a> 0) b, then the detection of overflow in multi-

x and y depends upon the detection of overflow in

(a + b) by IY I" What we do in that case is

x I = a + b

and repeat the entire procedure to try to determine whether

or not IXl. yl = IXl1' Iy I =

necessary, we define an x2, an

obtaining each

same way as x 1

x., some test such as
1

since

la÷bl'lYloverflowsIf

x 3, or even an Xk+ l,

x. from the preceding one in exactly the
l

is obtained from x. Eventually, for some

a 4Ibl will halt this procedure

• . ., etc.

66

This follows from

IxJ = a + k > a >, a + b = x I > 0

since b (0; similar relations hold for x I and x 2, etc.

Thus, we have obtained an iterative procedure for de-

tecting multiplicative overflow, a "flow chart" of which

is given in Figure I. Let us now formalize this pro-

cedure for overflow detection by stating it as

Theorem 2.3 (Multiplicative Overflow Detection-

Method I) - Let K b__eeth____elarqest of the absolute

values of the inteqers in a residue number system. Let

k and d be integers a__s defined above in (2.3) and

(2.4) _n_assume_or_on_,eni_°oe_a_ I_I>"l_J._et

xo--x. b : lYl-k. and ao = Ixo]-k.
and let z. be the computed product of x. and y.

1 _ _ l

Then xy overflows if b > 0 or if an_ of the con-

ditions A.- D. holds for i = 0:

A. z. = 0 while x. _ 0 _ y;
1 1

B. z. has the wronq siqn (z. _ 0);
1 1

c 0 <Izil<Ixil,

D 0< Izil<I_I
Moreover, xy doe_____sno____toverflow if either of the

Fiqure I - Multiplicative Overflow Detection - Method I

_ _ _ 9 2 __-__ _

5_ L=o

Wo'=X

b -- I'/I- k

Co,_F,,+_

(14o

OrE R FLO

©
67

68

conditions

mo

F.

If none of

E. - F. holds for i = 0:

a. _<0;
1

A. - F. holds for a qiven i, define

xi+ 1 an__dd ai+ 1
as follows:

xi+ 1 = a.1 + b __and ai+ 1 = IXi+ll
- k.

If any o_f_f A. - D. holds for i) i, xy overflows;

if either of

if

E. - F. holds, xy overflows if and onlz

2

Izlj 0÷b lyI > d÷b

The proof of this theorem is implicit in the

discussion which preceded it, but two clarifying

statements are needed. First, since the sign and mag-

nitude tests related to conditions A. - D. are

completely independent of those related to conditions

E. and F., since the truth of any of A. - D. is

sufficient to guarantee that multiplicative overflow

occurs in calculating

either of E. and F.

that overflow does not occur in calculating

follows that none of the conditions A. - D.

be true whenever either

zi, and since the truth of

is sufficient to guarantee

zi, it

will ever

E. or F. is true, and vice

versa. (Note that condition E. is actually super-

fluous since a° _< 0 certainly implies ai<_Ib I which
l

is condition F.) Second, since the algorithm is de-

pendent upon the assumption that Ixil >I IYl, one might

think that an interchange of x's and y's is

necessary whenever none of A. - F.

for a given i and it happens that

Iy I. However, since b <_ 0,than

is satisfied

Ixi+iI is less

it follows

from the definition of ai+ 1
that, in that case, con-

dition E. would be satisfied by ai+ 1 regardless

of whether or not xi+ 1 and

In other words, if for some

IXi+l] < ly I while

overflows if and only if z 1

needn't bother to interchange

y are interchanged.

i we have

Ixil >I I y I' then xy

2
> d + b , so that we

and y. (InXi+l

light of this, it also follows that condition D. is

superfluous, since, by the assumption that Ixl >/ IYI'

condition D. implies the weaker condition C.)

69

To illustrate the use of this algorithm for

detecting multiplicative overflow, let us consider the

multiplication of x = 29 and y = 9 in a residue

number system whose range is -104 through 105. Using

the above definitions gives

K = 105, k = i0, d =

z0 = 51, a 0 = 19, and

Since none of the conditions A F.

these values of x (=x0), y, z 0 ,

culate

x I = a 0 + b = 18

and the (computed) product z I = -48

Since z I is negative while both x 1

tive, we now find that condition B.

we conclude that xy overflows.

,

b = -i.

is satisfied for

a0, and b, we cal-

of x I and y.

and y are posi-

is satisfied. Thus,

70

It should be noted that when the computer range is

not "symmetric" about zero, as in the preceding example,

it is necessary to use two

K = 105,

example.

K_s and two

K _ = 104, d = 5, and d' = 4

One K and the corresponding

used when the product of

that is, when x and y

other K and d

d_s _ e_g_ t

for the above

d are to be

above example) when the product should be negative.

this way, we may provide for the situation where xy

Ixl- lyl does not. (In the above ex-overflows but

ample, this could happen only when the true product xy

x and y should be positive -

have the same sign - and the

(denoted by K' and d' for the

In

is -105.) Clearly, this modification to the procedure

given in Theorem 2.3 is not needed whenever the computer

range is "symmetric" about zero - say, the integers

M - 1 M - 1
2 through + 2 - or consists entirely of

non-negative numbers - say, the integers 0 through

M - Io

71

After picking a few "sample" multiplications at ran-

dom and using the above algorithm to determine whether

or not multiplicative overflow occurs in each case, we

begin to feel that instances in which it is necessary to

calculate an x2, an x 3, or even an Xk+ 1 to deter-

mine conclusively whether or not multiplicative overflow

occurs are probably quite rare. Nevertheless, the pos-

sibility of such cases does exist and motivates us to

seek a faster method of detecting multiplicative over-

flow when the sign and magnitude tests, ioe., conditions

A. - D. in Theorem 2.3, are inconclusive.

D. Multiplicative Overflow (continued).

now assume that the sign and magnitude tests

described above have been applied to x, y,

Let us

A. - D.

and their

72

computed product

ditions

z with the result that none of the con-

A. - D. is satisfied. Let us also assume that

M - 1
of integers -

2

M

integers - --7 + 1

we have

and that our computer range is either the set

M - 1

through + 2 or the set of

M

through 2 " Thus, by assumption

does not occur.

have

M/2

which indicates that

If we define n to be the unique integer such that

2n _ M/2 < 2 n+l (2.8)

and if p + q _ n, then it fellows immediately that

IxYl = ix i:l y I _ 2p "2q = 2P+q _ 2n _ M/2,

which means that overflow - that is, IxYl > M/2 -

Similarly, if p + q) n + 3, then we

and q such that

2q,1< iyl.<2q (2.7)

xy overflows.

can obtain unique integers

2P-I < i x I _ 2P and

P

0 < <-Ixl.<i l-<

Now, instead of comparing Ixl and ly I with k as be-

fore, let us postulate the existence of a table of

powers of two, stored within the computer, from which we

If p + q = n + i, then it follows that

so that any overflow can be detected by the presence of

the "wrong" sign on z

x _ 0 _ y. Finally, if

or by the fact that z = 0 while

p + q = n + 2, then we have

2n_ 2 q-2<Ixl"IYI

which means that the wrong sign on z

have indicated any overflow such that

or such that

2 p+q = 2 n+2 _< 2M,

(or z = 0)

M

Therefore, if

distinguish between two cases:

Case

Case

Clearly, in Case

p + q = n + 2, it remains for us to

A there is overflow and in Case

wil i

73

B there

is no overflow.

To distinguish between Cases

to be the computed product of

A and B, let us define

2 p-I and I y I" Then,

in Case A, we have

,,2<Ix/21.l yl-< 2p-"lyl _2p-_
= 2n+l _< M,

2q

which means that z I will be negative or zero. But, in

Case

which indicates that z I will be positive.

B, we have

Therefore,

when p + q = n + 2, xy overflows if and only if z 1,

the computed product of 2 p-1 and]y I' is negative or

zero. This completes the proof of

Theorem 2.4

Method II) - Let

(Mul_iplicative Overflow Detection -

z b__eethe computed product of x and

y, where Ix I)ly I' in a residue number system in which

the absolute value o__f al____linteqers is no qreater than

M/2. I__f x _ 0 _ y, let

teqers satisfyinq (2° 7)

computed product of 2p-I

74

if and onll if one or more of the followinq conditions i__{s

satisfied. _

A. z = 0 while x _ 0 _ y;

B. z has the wronq

c. 0 <izI<ixl;
D. p+ q= n + 3;

E. p+ q= n + 2 and z I (0.

w w w

Interestingly enough_ it is also possible to deter-

mine whether or not multiplicative overflow occurs when

(z 0);

p, q, and n be the positive in-

and (2.8), and let z I be the

and ly I" Then, xy overflows

n + 1 4 p + q 4 n + 2

detection procedure.

tegers such that

c= Ixl - 2P-I

then we have

by using the additive overflow

If we define c and d to be in-

and d = I yl - 2q-l, (2.9)

From (2.7) and (2.9)

0 <c _2 p-1

if follows that

and 0 < d _ 2 q-l,

so that each of the four terms on the right side of

4 2 n (M/2.

xy overflows if and only if

is not greater than

2P+q-2

Hence, it follows that

additive overflow occurs in calculating the sum in the

right side of equation (2.10).

(2 .i0)

(2.10)

75

While this technique of using additive overflow to de-

tect multiplicative overflow seems simpler than using z 1

as prescribed in Theorem 2.4, it turns out that one to

three magnitude comparisons (two to six conversions from

residue to mixed-radix notation) are required to deter-

mine whether or not any additive overflow occurs in (2.10),

while only one sign test (one residue to mixed-radix

conversion) is necessary to check condition E. in Theorem

2.4. Hence, using z I as prescribed in Theorem 2.4

"faster" than using equation (2.10).

is

76

It should be mentioned that the requirement of a

stored table such as is needed for the overflow detection

procedure given in Theorem 2.4 is quite reasonable. The

table itself would not be very large since it need contain

only those (positive integer) powers of two within the

computer range. Furthermore, the integers p and q

would be obtained easily from the table by a simple "look-

up" procedure in which the mixed-radix coefficients of

I x I and l y I would be compared with those of the powers

of two stored in the table, and the mixed-radix co-

efficients of I x I and I y I would already have been com-

puted in order to perform the sign and magnitude tests

A. - D.

To illustrate the use of Theorem 2°4,

the multiplication of

number system in which

through 105.

product of x

the conditions

let us consider

x = -31

M = 210

and y = 8 in the residue

and the range is -104

First, we note that, since the computed

and y in this system is z = -38, none of

A o - C. in Theorem 2.4 is satisfied.

Second, we obtain

that

since

P+q

or

p = 5 and q = 3, from which we find

= 8 = n + 2,

z I givesn = 6. Next, calculating

2P-I" I y I = 16-8

z I = -82° Since condition

= 128 - -82 (mod 210)

E, is now satisfied,

multiplicative overflow is indicated.

77

For comparison, we note that using (2.10) to detect

overflow in the above example requires at least one mag-

nitude comparison (meaning two residue to mixed-radix

conversions) to detect additive overflow in

Ixl : ÷ + +
= 26 + 15o22 + 4°24 + 15o4

= 64 + 60 + 64 + 60°

Only one residue to mixed-radix conversion was required

to find the sign of z
i"

We have now shown how to detect overflow resulting

from addition, subtraction, and multiplication in modular

arithmetic computers - or, at least, in those having cer-

tain "select" computer ranges° In all cases concerned,

two or more mixed-radix conversions are necessary to

78

determine whether or not overflow has occurred, and in some

instances, considerably more computation than that is

necessary to confirm the presence or absence of overflow.

This means that overflow detection in modular arithmetic

computers will always be somewhat slower than in compar-

able conventional digital computers and that, in general,

more complicated circuitry will be needed for overflow

detection in modular arithmetic computers. However, this

handicap is not as great as it might seem, since over-

flow detection tests need not be used as often in mod-

ular arithmetic computers as in conventional computers.

The reason for this is that_ unlike the truncation in con-

ventional computers, the truncation used in residue number

systems often permits the correct answers to be obtained

even though overflows may have occurred at many inter-

mediate steps in the calculations+ For example, in cal-

culating the partial sum of an alternating series, the

programmer of the modular arithmetic computer may completely

ignore the fact that the individual terms in the series

overflow if he is certain that the partial sum itself will

be within the computer range. In facto this particular

property of residue number systems will be used extensively

in performing some of the important calculations needed in

the division and square root methods described in the next

two chapters.

79

Therefore, although overflow detection in modular

arithmetic computers is somewhat more cumbersome than might

be desired, we have shown that it is possible to detect

such overflow and we have given methods whereby the de-

tection can be accomplished in a reasonable amount of com-

puting time. Although we have found it necessary to intro-

duce a small table of powers of two in order to allow a

more efficient method - namely, that of Theorem 2.4 - for

detecting multiplicative overflow, we shall find in the

following two chapters that this same table can also be

used to facilitate other very important operations in

modular arithmetic computers.

CHAPTER III

DIVISION

A. Division in Residue Number Systems. Normally,

when we speak of the division of, say, x by y in any

number system, we are referring to the process of obtaining

the solution z of the linear equation

yz = x.

Assuming that multiplication is commutative and asso-

ciative'in the number system, the existence of such a z

(for all x) is equivalent to the existence of a multi-

-i
plicative inverse y of y such that

-i -I
yoy = y -y = i,

where I denotes the multiplicative identity,

Jacobson [14], po 24.)

-i
exists, then z = xy .

(See

Clearly, if such an inverse
-i

Y

In a commutative ring, the existence of a multiplica-

tive inverse for any element y is dependent in part upon

whether 'or not y is a zero divisor - that is, whether

or not there exists a w _ 0 in the ring such that

80

81

yw = 0, where 0 denotes the additive identity in the

ring. In particular, if we assume there exists a multi-

-i
y for the zero divisor y, thenplicative inverse

we have

(y-i 1 -iw = l-w = .y)w = y- (yw) = y "0 = 0,

which contradicts the definition of w. Hence, if y

is a zero divisor, then it has no multiplicative inverse,

and "division" by y is not possible.

It is not hard to verify that, under addition and

multiplication modulo M, the product of the moduli,

residue number systems are always commutative rings. How-

ever, unless M is a prime, in which case it is the only

modulus, all residue number systems contain non-zero ele-

ments which are zero divisors. (See Jacobson [14], pp.

66-68.) In particular, if y is any non-zero integer

in a residue number system and if y is not relatively

prime to all the moduli for the system, then

divisor and has no multiplicative inverse.

y is relatively prime to all the moduli, division by y

is impossible - that is, for each

system,

yz _ x (mod M)

y is a zero

Hence, unless

(3 .i)

x in the residue number

82

either has no solution z or has several different

solutions. (For example, in the residue number system

based on the moduli 2, 3, 5, and 7, there exists no

integer z such that

36oz _ 59 (mod M),

but there are five solutions to

-95"z _ 20 (mod M):

z = 2, z = 44, z = 86, z = -82, and z = -40.) Further-

more, even if the multiplicative inverse of an integer y

does exist in a residue number system, the solution z

to (3.1) is not the quotient one would expect from most

computers unless x is an exact (integer) multiple of y.

The reason for this is that the multiplication in (3.1)

is performed modulo M. (For example, in the residue

number system used above, the solution z to (3.1) for

x = 78 and y = 37 is z = -66.) Hence, even when

division is possible in a residue number system, the quo-

tient obtained in many cases - in facto in most cases - is

not suitable for use in most computer applications°

There are also zero divisors in the number systems

used in conventional digital computers, but there the

problem discussed above is avoided by using a different

definition of division. In particular, when a number x

is divided by a non-zero number y in a conventional

digital computer, the "quotient" which results is usually

the "integral portion" of the true quotient - that is,

the greatest integer not exceeding Ix/y , preceded by

the proper sign. To obtain this "quotient" in conventional

digital computers, "division" is usually performed by a

sequence of subtractions and "shifts" which amounts to

generating the quotient by counting the number of times

the divisor can be subtracted from the dividend before

a sign change occurs.

83

There is no reason why we cannot carry over this new

definition of quotient for use in residue number systems

or, for that matter, why we cannot use some other defin-

ition of quotient such as, say, the "nearest" integer

to x/y. However, we do encounter considerable difficulty

in carrying over to residue number systems the method of

division by subtracting and "shifting." In particular,

since sign determination is more difficult in modular

arithmetic computers than in other digital computers (the

results of Chapter I notwithstanding), the method of

simple repeated subtraction of the divisor from the dividend

is prohibitively time consuming and inefficient. Further-

more, if we try to speed up this procedure by using the

technique of "shifting" used in conventional computers,

we find that performing a "shift" in residue number sys-

tems is equivalent to performing the division itself.

84

Therefore, we shall now seek some other procedure

whereby we can conveniently calculate some reasonable

approximation to the quotient of the (non-zero) integers

x and y in a residue number system. We shall present

a new method for finding the nearest integer to (or the

integral portion of) the quotient x/y, and then show how

this method can be extended to give a much better approxi-

mation to that quotient. Finally, we shall apply these

new "division" methods to enable modular arithmetic com-

puters to perform "floating-point" arithmetic - a capa-

bility heretofore possessed only by conventional digital

computers.

B. Division Alqorithms for Residue Number Systems.

Let us now assume that x and y are non-zero integers in

a residue number system whose range consists of the integers

M - 1 M - 1 M

- 2 through + 2 (if M is odd) or - 7 + 1

M
through -_- (if M is even). Let us assume further that

there exists a table of powers of two from 21 through

2n where, as in (2.8),

2n _< M/2

n is the integer such that

< 2n+l . (3.2)

As we explained in Chapter II, we may obtain from this

table the non-negative integers p and q such that

2p-I < Ix J _< 2 p and 2 q-I < I y J _< 2 q. (3.3)

From these inequalities it then follows that

2P-q -I =

l /yl< 2P/2q-l_-2p-q+1

so that it seems reasonable to choose

= 2P-q

or one. In that case, we may ignore

between the two possible values for

2ix J and comparing" it with

0 <

z 1

as a first approximation to

then the nearest integer z

then

(3.4)

However, if JxJ <j YI'

must be either zero

z I and choose

z by calculating

so that we should set

lyJ. If

Jx/yJ < 1/2,

z = 0. But if I I I,t en

85

so we should set z = i. Moreover, since

we have 2 x I < M, so that the computed product

be negative if multiplicative overflow occurs.

__pr®duct

satisfies

and we should again set

21x I will

Hence, if

2 Ix l < 0, then the true product

z = i.

86

On the other hand, if

integer to x/y I is greater than or equal to one o
I

I t en neareo
Also,

in this case, p-q >_ 0 so that

we define the integer e I by

e I = Ixl

and combine this definition with

definition of Zl, we have

2 p-I _ 2q2P-q <

or

z I is an integer. If

(3.3) and with the

e I < 2 p - 2q-12 p-q (3.6)

lel I < 2p-I"

Ix I _ M/2, it follows that p _ n+lo Hence,

fell < 2p-I _< 2n _<M/2,

But, since

which means that
e I is within the computer range.

Now, if

e =i i
z I is exactly equal to

e I = 0, it then follows from y _ 0 and

that Ix/yl , so that we may set

z = z I to obtain the nearest integer to Ix/yl - namely,

Ix/yl itself. If, however, e I _ 0, we then turn to the

table of powers of two to obtain the non-negative integer

r I such that

Since

Hence, if

r I - 1 r 1

2 < lelJ _< 2 . (3.7)

it follows from this definition of r I that

2rl-q-i = 2rl-i/2q < (Ix/yl - Zll

< 2rl/2 q-I = 2rl-q +I.

r I >_ q, then

1/2,

so z I

(3.8)

r I />q

reasonable, in view of

"correction" to z I. Furthermore, inasmuch as

negative if z I > Jx/y I and positive if z I <

is surely not the nearest integer to Ix/yl. Since

also implies that 2 rl-q is an integer, it seems

(3.8), to use this quantity as a

e I is

Ix/yl, we

may use this correction to obtain a second approximation

z 2 to Ix/yl by defining the integer z 2 by

z 2 = z I + (siqn el)2rl_q_

87

As we did for

taking i = 2 in

If

satisfying

Zl, we calculate e2 from z2 by

e_:Ixl l_l z_o (_

e 2 _ 0, we define r 2 to be the non-negative integer

2ri -I < leil _< 2 ri. (3.10)

Repeating this procedure for i = 2, 3,.. _, we define

the next approximation to Ix/yl whenever e. M 0 and
1

r.)q by
1

= z. + (sign e.) 02ri-qo
Zi+l l z

(3.11)

Then if

ei+ I

e. > 0 for any i, we have
1

:LxI-i_I z_+_=Ixi-L_i (z_÷_r_-_
-- e"-I'1" _r_-_"1

Combining this with (3.10) gives

_2ri -1 = 2ri -I _ 2q2ri-q
< ei+ 1

< 2ri _ 2q-12ri-q = 2ri -I (3.12)

or

lei+ll < 2 ri-l.

Similarly, if e. < 0, then we have
i

ei+l z

from which we obtain

_2ri -1 = _2ri + 2q-12ri -q < ei+ 1

< _2ri -1 + 2q2ri -q = 2ri -1 (3 ,13)

88

89

or

Hence, either

that

ei+ll < 2ri -I.

ei+ 1 = 0 or else it follows from (3.10)

ri+ 1 _< r.m - I.

Thus, eventually.for some

which case z = z. is exactly
l

i, either e. = 0, in
1

x/Yl, or else we have

r. < q.
1

If, in the latter case, r i _ q-2, then it

follows from (3.9) that

llx/ l
2ri -q+l _< 2 -1 = 1/2,

so that setting z = z. makes z
l

to Ix/yi . On the other hand, if

the nearest integer

r. = q - i, then
l

(3.9) gives

1/4 = 2 -2 = 2ri-i/2 q < lei I/I_ I

= llx/yl - z'l < 2ri/2q-i = 20 = 1'

in which case z. differs from the nearest integer
1

z to Ix/Yi by at most one. In this case, we calcu-

late 2e. and compare it to e. and I y I. If 2e.
1 1 I I 1

and e. have opposite signs, then multiplicative over-
l

flow must have occur;ed in calculating

2tail is clearly greater than i y I"

2e., so that
l

(Overflow occurs

9O

in 2e. if and only if
1

2e. and e. have opposite signs
1 l

since

21eil < 2.2ri = 2.2 q-I = 2q <:2 n+l _< M.)

On the other hand, if 2e. and e0 have the same sign,
1 1

then no overflow has occurred, so we may compare

and I y I directly. If

-IY I <_ 2e i <I Y I,

2e.
1

then it follows that

1

so that setting z = z0
1

integer to Ixw l. _

again makes z

Ix/yl = k + 1/2
l l

the nearest

for some non-

negative integer k, we round the 1/2 "upward" to oh-

tain z = k + i.) If e° is negative and 2e. overflows
1 1

if both 2e0 and e. are negative and 2e° < - IY I ,or
1 1 1 l l

then we set z = z. - 1 to get
1

-112 < Ixlyl- z < 1/2° (3.14)

And if e. is positive and either 2e. overflows or
1 1

2ei> I I y I, we then set
z = z0 + 1 to arrive at

l
(3.14) .

Thus, we have obtained a division algorithm, a '"flow

chart" of which appears in Figure II, and we have estab-

lished

!

Theorem 3.1 _Divisioq Algorithm) - Le___tt x _ an___d y be

non-zero inteqers in a residue number svste_,_n which the

91

absolute values of all integers ar___eeno____tgreater than M/2.

Le____t p

(3.3)

i.

.

.

The_____nn,z

that i___s,

an___dd q be the non-negative integers defined b_l[

and let z be the integer determined as follows:

by (3.9). If e. = 0 for any i, set z = z..

If e. _ 0 for any i, let r. be the non-

negative integer satisfying (3.10). If r. i> q,
-- l

calculate zi+ 1 by (3.11) and go back to step

2 above to calculate ei+ 1. __If r.l = q - l,

calculate 2e.. If 2e. and e. have opposite
1 -- l l

signs or if

either of

2e. and e. have the same sign and
l -- l

2ei< lYlor 2ei lYl
is tru__ee, set

z = z.l + (sign ei)'l.

Otherwise, set z = z0.
-- 1

satisfies

-1/2.<Jx/yi - z <1/2;

Z is the nearest integer to Ix/yl .

Once having obtained the nearest integer z to

by the procedure given in the above theorem, we

Fi,gure

(
II - Division

BE&zN

Alqorithm

-,',--> _ _ _ I

v klvl ,(.2ec ?/

92

can easily obtain the nearest integer to

the sign of z to minus whenever x

signs and leaving it plus otherwise.

x/y by changing

and y have opposite

The signs themselves

can be determined from the mixed-radix coefficients of

x and y which are used to obtain p and q from the

table of powers of two. Note that, if we wish, we may use

the above algorithm to obtain the "integral portion" z'

of the quotient by setting z' = z - 1 whenever

Ix]- l y l,z is negative and z' = z otherwise.

93

Note also that the above algorithm is independent of

the moduli used in the residue number system and assumes

M - 1
only that the computer range is from 2 through

M - 1 M M
+ 2 or from 2 + 1 through -_-. The residue

number system itself comes into play only when we allow

for multiplicative overflow in calculating 21x] and 2e..l

However, in calculating ei, we make implicit use of the

overflow and truncation properties of residue number systems,

so that this part of the above algorithm may not work pro-

perly for the number systems used in conventional digital

computers. In particular, in the discussion which preceded

Theorem 3.1, we proved only that e is within the com-
l

puter range for each i - that is, we proved that e I is

94

within the computer range and that, for each i, ei+ll < eil

- but we did no____tprove anything at all about overflow in

the intermediate results used in calculating e.. In general,l

these intermediate results are no____twithin the computer range

so that multiplicative overflow usually occurs in the cal-

culation of l y i,z.. _ Butp because all operations are
I I

performed modulo M in the residue number system, the

correct result is still obtained when we subtract the com-

puted product of i y I and z. from Ix I" Hence, although
1

few assumptions are made about the particular residue num-

ber system being used, the algorithm given in Theorem 3.1

makes rather important use of the fact that the calculations

are performed in a residue number system (as opposed to the

number systems used in conventional digital computers).

Although we can prove only that ri+ 1 < rl - 1 for

each i, the algorithm given in Theorem 3.1 usually con-

verges quite rapidly to z. For example, if x = 136,047

and y = 85, we apply Theorem 3.1 as follows to obtain

the nearest integer z to Ix/yl = 1600.5529...:

since Ixl>lyl, we obtain p = 18 and q = 7First,

from the table of powers of two. Setting

z I = 2p-q = 211 _ 2048

95

gives

Next, since

culate z 2

Then, from

eI = 136,047

r I = 16

by

z
2

is greater than

85_2048 = -38,033.

q = 7, we cal-

= 2048 - 29 = 1536o

e2 = 5487 and r 2 = 13, we obtain

z3 = 1536 + 26 = 1600,

e3 = 47, and r 3 = 6.

Since r 3 = q-l, we calculate 2e 3 = 94, which is clearly

greater than ly I = 85. Hence, we set

z = z + 1 = 1601,
3

which is indeed the nearest integer to

Perhaps the most interesting feature of the above

division procedure is that it can be extended to provide

a much better approximation to Ix/yl than the nearest

integer obtained in Theorem 3.1. In particular, the

algorithm of Theorem 3.1 can be modified to yield an

approximation to Ix/yl in the form w-2 j, where w is

an integer in the residue number system and j is a

negative integer. Using z I = 2p-q and the definition

(3.5) for e I , we were able to show in the proof of

Theorem 3.1 that

fell < 2p-I.

96

Hence, if we define

-j
w I = Zl-2 =

then we have

whenever

w I and fl

2p-q-j and

w I - 2P-q-J

respectively by

= xI i

< 2n+l-q _< 2n <M/2

0>I j _>p - n _ 1

and q _> i. If q = 0, then I yl = 1

(3.15)

and no elaborate

division procedure is necessary; that is, we may set

I I -jw = x _2 , where

to obtain

Also, if j

0 >lj _>p-n,

= I :ixl
(3.15), then we have, as in

< fl <2-j2p - 2q-12P-q-J

w.2 j

satisfies

2-J2P-i _ 2q2P-q-J

which gives

Hence, by choosing

Ifll < 2p-j-I ..<2 n ..<M/2.

j to satisfy (3.15),

that the integers w I and fl

(3.6),

we are assured

are within the computer range.

If fl = 0, then Ix/yl = Wl.2J

is completed. Otherwise, as in (3.7),

negative integer s I by

2"i--i < Ifll <2Sl'

and our division

we define the non-

97

and if sI >I q, we obtain a better approximation

to Ix/yl by setting

w2 = wI + (sign fl).2 sl-q.

w2-2J

Clearly, we may continue this procedure as before, defining

the integer f. by
l

and, if f. _ 0,
l

If s. >_q,
1

f'l = 2-j x - y i-wi (3.16)

defining the non-negative integer s. by
1

2si-1<Jfil 2si" (3.17)

the next approximation Wi+l 0 2 j to Ix/yl is

defined by

wi+ 1 = w°l + (sign fi)-2 si-q. (3.18)

Thus, if f. > 0, then
l

and it follows as before in (3.12) that

-2si-1 = 2si-1 - 2si-q2q < fi+l

< 2si _ 2q-12si-q = 2si -I,

And if f. < 0, then
l

fi+l = f'l + I y "2si-q

and it follows as in (3.13) that

-2si-i = -2si + 2q-12si-q < fi+l

< _2si -I + 2q2si-q = 2 si-l.

Therefore, in either case,

fi+ll < 2si-l'

98

so that it follows from (3.17) that

si+ 1 _< s.z - i. (3.19)

Hence, eventually for some i we must have that f. = 0,
1

in which case w.-2 j = Ix/yl , or else we must have s. < q.
1 l

If si _< q - 2, then

f l_/_l - w_=JI= _J.l_l,, _I< _J_s__-_ _<_J-_.
_ _._= _- _, wecompare_I_1 wit_ I_ I an_set

i_ 2ifil>lYl"
This again gives

w = w.z + (sign fi)_.i (3.20)

Otherwise, if
I I I I_.,_,(,_,,,,-,, wesetw=w..

Thus, we obtain a division algorithm whose "flow chart" is

essentially the same as that given in Figure II, but which is

capable of giving a more accurate approximation to the quot-

ient than the algorithm of Theorem 3.1. This completes the

proof of

Theorem 3.2 (Division Algorithm - Extended Form) - Let

x and y b__eenon-zero integers in a residue number system in

which the absolute values o__f th____eintegers are not qreater than

M/2. Le____tp an___ddq be the non-negative integers defined by

(3.3), le____tn be the positive integer satisfying (3.2), let

j be an_ integer satisfying (3.15), and let w be the integer

determined as follows:

.

2.

.

.

The_____n,w

I__f q = 0, se___t w = I xl-2 -j

99

If q _ 0, set w = 0 if

p-q-j+l = 0 and 2-J+l I x I <ly I"

and 2-J+llx 17 I YI' se____tw = i.

I__f p-q-j >i 0, se___t w I = 2 p-q-j

p-q-j+l < 0

by (3.16) . If f. = 0
1

f. 'o

or if

p-q-j+l = 0

and calculate fl

for some i, set w = w..
1

for any i, let s. be the non-negative
-- -- l

integer satisfying (3.17). If s. >w q, define
-- 1

wi+ 1 by (3.18) an___dqo back to step 3 t__oocalculate

fi+l" If s. = q - l, calculate
1 2 Ifil and R obtain

W romwlbY 3o20 __if21fil>lYlo
set w = w..

Otherwise,

satisfies

that is, w differs from 2 -j Ix/yl by at most 1/2.

One of the more desirable features of the algorithm

given in this theorem is that j may be changed in suc-

cessive "iterations" - that is, j

increases. In particular, for any i, f
i+l

be within the computer range if we decrease

as

may decrease as i

will still

j by as much

t. = n - s. + 1 for the (i + l)st iteration.
1 1

i00

Doing this increases Wi+l_ and fi+l

ti_
by a factor of 2 ,

but, by (3.19) and the definition of t.,
1

we have

Ifi+ll _< 2si41 _< 2si-12ti _ 2n _M/20

Hence, we may decWease j with each iteration in order to

obtain increased accuracy in the approximation w.2 j of

Ix/y I However in order to keep w. within the computer
' 1

6,

range _we d_rease j, we must also requiZ_e that

0 >I j _ (p - q - n + l)=_Jmin. (3.21)

Since

Ix/y I < 2p-q+l,

keeping j in the interval specified in (3.21) gives

2p- q- j +i_ n
lwil < _ _ 2 < M/2.

And if fl < 0, then Ix/yl <_2 p-q, so that we may further

decrease Jmin to p - q - n. Note that, as for the e.'s
l

in Theorem 3.1, the integers f. in Theorem 3.2 are
l

always within the computer range, but the intermediate

results _- the prDducts 2-Jlx] and ly 1 " w i, in (3.16)-

may be outside the range and may thus cause multiplicative

overflow. However, if the multiplications and the sub-

traction are performed modulo M in a residue number

system, the computed difference f. of the computed pro-
l

ducts 2-Jlx I and I Yl "w_l will S£ill be correct.

i01

As before in Theorem 3.1, our proof of Theorem 3°2

guarantees - in (3.19) - only that the error in the approx-

imation w..2 j to Ix/yl will diminish by approximately al

factor of two in each successive iteration, Cases actually

exist - namely, when Ix/yl = 1/3 or 2/3 - in which the

algorithm of Theorem 3.2 converges in exactly this way

- that is, si+ 1 = s.l - 1 - so that we cannot hope to

obtain a "sharper" estimate of convergence than that given

in the above proof. However, as the following example

suggests, the algorithm of Theorem 3.2 actually gives,

in many cases, a rate of convergence considerably greater

than the minimal rate given in the proof.

To illustrate the use of Theorem 3.2, let us assume

our residue number system to be based on the eight moduli

2, 3, 5, 7, II, 13, 17, and 19. Since this gives

M/2 = 4,849,845 and since 222 = 4,194,304, we have

n = 22. If we now apply Theorem 3.2 and the remarks

following it to approximate the quotient of x = 829,314

and y = 6,057 with the maximal accuracy permitted by

our residue number system, we obtain first, from (3.3)

and (3.15),

p = 20, q = 13, and j = -3.

102

Hence, for the first "iteration" we set

and

from which we get sI = 19 using (3.17).

iteration, we set

w2 = wI + 2sl-q = 1024 + 2

wI = 220-13-(-3) 2 I0 = 1024

j = -3. Calculating fl from (3.16) gives

fl = 23"829'314 - 6057-1024 = 432,144

For the second

6
= 1088,

and since we wish to obtain maximal accuracy, we decrease

j by

t I = n - s I + 1 = 4.

t 1

This gives j = -7 and, by multiplying w 2 by 2 to

compensate for the change in j, w 2 = 17,408. Proceeding

with the second and following iterations as prescribed in

Theorem 3.2, we obtain the results given in Table IV.

From (3.21), we calculate that Jmin -14, so that we

halt the algorithm when j = -14 and s < q = 13. The
l

resulting approximation,

2,243,269 . 2 -14 = 136.91827392...,

differs from

Ix/y I = 136.91827637...

by approximately 0.00000245, which is considerably less

than the maximum error

2J-i -15 0000305= 2 = 0. 2...

predicted in Theorem 3.2.

%

o

ee

o

-r-I

_>
H

L"-.
e_
_0

O0
,-I
0'_

c'q
,-I

II

x

L_
Q

II

,-.-I

&
GO

II

.n
c,4

I

II

0

$-t
r_

-It

-,-I

.,-I
u_

-r'_

c_
00
,-I
0'_

+

_D
p...

O0
,-I
0"_

c_
+

_0
c_

p..
,-I
CO
0

d
!

4

,.-!
0

d
I

_D
O0
0"_

eq
0
0

d
I

0

0
0
0

d
+

¢"3
_0
0
0
0
0

d
+

0
0
0
0
0

d
+

_ _ _ _ • .

o o or 0 0 _ d &
0 0 0 0 0 L_- O0 O_
0 0 0 0 I._ O0 _
0 0 0 0 i_ _D ,-_
0 0 0 L_ O0 O_ CXi
0 0 0 L_ ,--I i_ C_O GO
0 0 0 c'_ _ ,--I ,--! ,--I
0 0 0 0'_ 0'_ 0'_ 0'_ 0'_

_ ,-.4 ,-4 _ _-t ,-i _.4 ,--4

O_ 0 _ ,-I 0"_ L_ P'_
,--I _ ,--1 C'Xl ,--I ,--I ,--I

0 0 C 0

_ ,--4 0 0 u'_

!

ix3 o'1

o ,g

I

0

&
,-4

I

f_

0

0 _I' _ _ _ '_
e-I r-I _ ,--I ,'-I

I I I I I I

t--I cxl C_l C'q c_i c,,1

,--I c'xl c'_ _1' _ _.0 I_ CO

103

104

Note that, in th_s example, w would still be within

the computer range if j were decreased to -15. However,

if this were done, w would not be less than or equal to

2 n = 222 , which is the criteria by which we determined

Jmin" Hence, it will happen occasionally that we can still

keep w within the computer range when we make j (one)

less than Jmin" In that case we have

2 n < w < M/2.

The probability of these cases, in which we obtain slightly

less than the "maximal" accuracy consistent with the range

of the residue number system, can be minimized by choosing

the moduli of that system such that their product is as

close as possible, but not less than, a power of two

that power being 2 n+l, where n satisfies (3.2).

Now we have shown how to perform "division" in residue

number systems. The algorithms we have given may be used

to give either an integer approximation to the quotient or

a closer approximation in the form _J, where w is an

integer in the residue number system and j is a negative

integer. In particular, we have illustrated in the above

example how the "exponent" j can be manipulated so that

the algorithm of Theorem 3.2 yields the most accurate

approximation consistent with keeping w within the

computer range. Next, we shall show how these division

algorithms can be used to help perform other useful

operations in modular arithmetic computers.

105

C. Floatinq-Point Arithmetic. In most digital

computers provision is made for representing very

large integers and very small fractions by what is

essentially the equivalent of "scientific notation."

That is, instead of representing "six-hundred billion"

ii

by 600,000,000,000, the more compact notation 6 _ i0

is used, and instead of representing "minus two

-6
millionths" by -0.000002, -2 _ i0 is used. In

digital computers, the equivalent of this scientific

notation is achieved by reserving a certain number of

digits in each "number" for the "mantissa" - 6 and

-2 in the above examples

for the "exponent" - ll

- and using the other digits

and -6 in the above ex-

amples. The computer programmer then has the option of

regarding the numbers within the machine as being in

the ordinary radix notation, which he calls "fixed-point"

notation, or in the above equivalent of scientific

notation, which he calls "floating-point" notation.

Hence, he has a choice of two sets of rules by which

additions, subtractions, multiplications, and divisions

are performed within the computer: "fixed-point"

arithmetic and "floating-point" arithmetic.

106

For example, in the IBM 7090 computer, a widely-

used large-scale computer, a number may be regarded as a

35"bit binary integer, preceded by a "sign bit," or as

a 27-bit binary fraction, preceded by a sign bit and

followed by an 8-bit binary exponent. The programmer

may instruct the 7090 to add two numbers as signed

35-bit binary integers by using an "ADD" instruction,

or he may use a

which causes the

"FAD" (floating add) instruction,

7090 to "shift" the 27-bit fraction

in one of the addends until the corresponding exponent

agrees with that of the other addend before adding the

two 27-bit fractions. In the same manner, other in-

structions may be used to cause the 7090 to perform

similar operations in subtracting, multiplying, and

dividing fixed- and floating-point numbers.

Clearly, addition, subtractiDn, and multiplication

modulo M, and the "nearest integer" division of

107

Theorem 3.1 are the modular arithmetic computer's equi-

valents of the 7090's fixed-point addition, subtraction,

multiplication, and division. But because of the diffi-

culties in performing the "shifts" necessary to align the

exponents of the operands in modular arithmetic computers,

these computers previously had no equivalents of the 7090's

floating-point arithmetic operations. Now, however, we

find that, by using the division procedures of Theorems 3.1

and 3.2, floating-point arithmetic operations can be per-

formed in modular arithmetic computers in a relatively

straightforward manner. In particular, we may represent

very large integers or very small fractions in modular arith-

metic computers in the form x.2 j, where x is an integer

within the "fixed-point" computer range and represented in

residue form and where j is another integer, probably re-

presented in the usual binary form.

To simplify the "shifting" processes necessary to align

properly the two operands for floating-point arithmetic op-

erations, the 7090 computer assumes that the operands are

given in "normalized" form - that is, the exponent in the

floating-point representation of a non-zero number is ad-

justed so that the absolute value of the binary fraction in

in the representation is less than 1 but not less than

1/2. (Zero is represented in floating-point form by a

zero exponent and a zero fraction.) After performing

each floating-point arithmetic operation, the 7090

automatically adjusts the fraction and the exponent in

the result to put it back into "normalized" form.

108

In modular arithmetic computers, too, floating-point

arithmetic operations may be simplified by assuming that

the operands have been "normalized" in some way. One

possible normalization of the non-zero floating-point

number x-2 j might be to adjust the exponent j so

that x satisfies

2n-1 <Ix I _2 n,

where n is the integer defined above in (3.2). Ex-

pressing a floating-point number in thi s way would pro-

vide the maximum number of significant digits consistent

with keeping x within the (fixed-point) computer range.

However, we feel that another form of normalization for

modular arithmetic computers leads to simpler floating-

point arithmetic operations. In particular, for a non-

zero number in the form x-2 j, we prefer to adjust the

exponent j in such a way that x satisfies

2m-i < Ix] < 2m,

where m is the positive integer defined by

m = [_] _ (3 22)• o •

In addition to simplifying, in particular, the operation

of floating-point multiplication, this form of normal-

ization yields reasonably simple floating add and sub-

tract operations as well and it has the added advantage

that the integer x can be represented by its residues

with respect to each of the moduli in some (proper) sub-

set of moduli whose product exceeds 2m , while the

exponent j is carried as a "residue" for one (or more)

of the moduli.

109

We shall now describe how the division algorithms

given above in Theorems 3.1 and 3.2 can be used to per-

form floating-point arithmetic operations in modular

arithmetic computers with numbers normalized as described

above• Unless stated otherwise, all divisions in the

following will be understood to result in the nearest

integer to the quotient as explained in Theorem 3.1.

i. Fixed-Point to Floating-Point Conversion. Con-

verting a number from fixed- to floating-point is

ii0

essentially a "normalize" operation. If the fixed-point

number v is zero, setting the floating-point number

u" 2j to zero -

the conversion.

powers of two the non-negative integer

and compare p with the integer m defined above in

(3.22). If p < m, we set u = v-2 m-p and j = p-m;

if p = m, we set u = v and j = O; and if p > m,

we divide v by 2p-m, set u equal to the result, and

that is, setting u = j = 0 - completes

Otherwise, we obtain from the table of

p such that

set j = m-p.

o

j < 0 for the number u-2 j

point form, we convert u.2 j

v by dividing 2 -j

the result. If

Floatinq-Point to Fixed-Point Conversion.

u by

j = 0, we simply set

If

in normalized floating-

to the fixed-point number

and setting v equal to

v = u; and if

j > 0, we multiply u by 2 j to obtain

for multiplicative overflow if we wish.

v, checking

3. Floatinq-Point Maqnitude Comparison.

the distinct normalized floating-point numbers

a = u'2 j and b = v-2 k,

Given

(3.23)

iii

we determine the signs of a and b from the signs of

u and v, respectively, which are obtained in turn from

the two-sided mixed-radix coefficients of u and v. If

a and b have different signs, whichever of a and b

is positive is obviously the greater. If a and b have

the same sign, we compare j and k and conclude that,

since a and b are both normalized, a > b

b are negative and j < k

and j > k, and vice versa.

if a and

or if a and b are positive

If j = k, then a > b if

and only if u > v.

4. Floatinq-Point Addition and Subtraction. Given

the normalized floating-point numbers a and b defined

above in (3.23), we shall calculate the normalized floating-

point number c =

ence of the numbers

t.2
i

manner by adding a

pute r = lj - kl-

then the smaller of

a

and

If

such that c = a + b. The differ-

and b can be obtained in a similar

b', where b' = -b. First, we com-

r >m, where m is defined in (3.22),

and I b I is too small to affect
I I

the floating-point representation of the larger when the ad-

dition is performed. Hence, we simply set

is, we set t = u and i = j - if j > k

j < k when r >m. Otherwise, if r _ m,

C = a - that

and c = b if

we set

W =u +v.2 r

and h = k

h = j =k

sum of a

and

if j >k;

if j = k.

and b, but since w-2 h

h = j if j < k; we set

and we set w = u + v

Then, w- 2h

112

w = u-2 r + v

and

is the floating-point

is not normalized,

we must now perform a "normalization" operation to obtain

c. From the table of powers of two we obtain the integer

p such that

and we compare p

If p >m, we set

2p-I <]x]_< 2p

with the integer

t = w-2 p-m and

(3.24)

m defined in (3.22).

i =h +p -m; if

p = m, we set t = w and i = h; and if p < m, we set

t equal to the quotient obtained by dividing w by

2p-m and set i = h + p - m.

5. Floating-Point Multiplication. Given the normal-

a and

c = t'2 i

and v to obtain w.

otherwise, we find the integer p

and set t equal to the quotient of

and i = j + k + p - m.

ized floating-point numbers

we calculate their product

multiply u

t = i = 0;

(3.23)

2P-m

b as in (3.33),

as follows. We

If w = 0, we set

satisfying

w and

113

61- Floating-Point Division. Given the normalized

floating-point numbers a and b as in (3.23), we

shall find the normalized floating-point number c = t-2 i

such that c = a/b. If a = 0, we set t = i = 0. If

b = 0, we do not proceed with the division, but rather

we give some indication -

indicator in the computer by zero was

attempted, v are both

non-zero

2m-I but less than or equal to 2m, where m is the

integer satisfying (3.22). Hence, we may divide u

by v as prescribed in Theorem 3.2, taking the j in

such as turning on an error

- that division

Otherwise, we know that u and

and that their absolute values are greater than

If r _ p

i = j- k - m; if

i = j - k - m + i.

-m+l. If w is the result of

t = i = 0 if w = O, and if

w _ O, we obtain from the table of powers of two an

integer r such that

2r-I <lw I _ 2r.

- that is, r < p -

r = p, we set

we set t = 2w and

t = w and

that theorem equal to

that division, we set

114

These procedures show how the division algorithms of

Theorems 3.1 and 3.2 can be combined with a suitable

definition of "normalization" to provide mo6_ular arithmetic

computers with the capability of performing floating-point

arithmetic operations. Because of the "normalization"

used, no overflow is possible in these operations except

where a very large floating-point number is converted to

fixed-pointo Clearly, however, the floating_point arith-

metic operations described above are somewhat slower and

more complicated than their fixed-point counterparts, but

theCsame can be said of the floating-point operations in

conventional digital computers. At least, floating-point

arithmetic operations are now possible_ in modular arith-

metic computers, whereas, to the best of the authores

knowledge, they had not even been attempted with previously

known division methods. (To illustrate the workings of

floating-point arithmetic operations in modular arithmetic

computers, we shall use some of the above procedures to

perform some floating-point operations in an illustrative

computation near the end of the next chapter.)

This presentation of floating-point arithmetic con-

cludes our discussion of division methods in residue

number systems. Although we have been able to prove only

115

that the division algorithms given above in Theorems 3.1

and 3.2 decrease the error in approximating the quotient

by a factor of two in each "iteration", we shall see in

Chapter V that, in practice, these procedures usually

converge much faster than that. In the meantime, we

shall devote our attention to showing how these division

procedures can be modified to approximate the square roots

of integers in residue number systems.

CHAPTERIV

SQUAREROOTS

A. Square Root Calculations in Digital Computers.

Since the arithmetic operations executable by digital compu-

ters are restricted to the "rational" operations, add,

subtract, multiply, and divide, irrational quantities such

as square roots must be approximated in these computers

through the use of only rational operations. The most common

method used for calculating an approximation to the square

root of a positive number in digital computers is the

Newton-Raphson iteration. For a positive number x, this

iterative method yields a sequence of approximations Yi

to the positive square root y of x as follows: from

any approximation Yi to y, the next approximation

Yi+l is calculated by

Yi+l = ½(Yi + x/Yi)" (4.1)

If the first approximation Y0 is any positive number,

then it can be shown that the sequence Yi converges to

116

117

y and that the convergence, in general, is rather rapid.

(See Hildebrand El2], pp. 447-448.)

In modular arithmetic computers, however, calculating

square roots by the Newton-Raphson method presents some

problems, primarily because at least one division is required

If we rewritein each "iteration."

valent form

(4.1) in the equi-

(yi 2 + x)

= , (4.2)
Y i+ 1 2y i

and if we use the algoritm of Theorem 3.1 to perform the

division by 2y i, then we obtain only the nearest integer

to Yi+l' which raises the unpleasant question of how the

convergence of the Newton-Raphson method is affected by

introducing these rather sizeable round-off errors. Further-

more, we must also worry about possible overflow in calcu-

lating the numerator of the fraction in (4.2), and if we

try to avoid this overflow by using (4.1), then we must

perform two divisions per iteration, which introduces possi-

bly a greater error in Yi+l than that arising from the one

"nearest integer" division needed in (4.2). Our other

alternative is to minimize the round-off error by using the

algorithm of Theorem 3.2 to perform the divisions in either

118

(4.1) or (4.2), but then we are forced to calculate the suc-

!

ceeding Yi s in floating-point arithmetic, which results in

a rather excessive amount of computation just to approximate

a square root in a modular arithmetic computer.

Thus, we are led to seek a method by which we can approxi-

mate square roots in modular arithmetic computers without using

division. In the method we shall give below, we shall avoid

division simply by modifying the division algorithm_itself to

yield a new algorithm by which we can calculate directly the

successive approximations to a square root.

B. A Square Root Alqorithm for Residue Number Systems.

Let x b_ any positive integer and let y be its positive

square root. We shall now d_scribe,__dure _reby we

can obtain an approximation to y in the form z-2 j, where

z is an integer in the residue number system and j is eith-

er zero or a negative integer. If j = 0, our procedure will

parallel the division procedure of Theorem 3.1 and will yield

the nearest integer to y, and if j < 0, our procedure will

be more like the division procedure of Theorem 3.2 in that it

will yield a closer approximation to y than the nearest

integer.

119

As in both of the division procedures given in Theorems

3.1 and 3.2, we begin our square root approximation algorithm

by using the stored table of powers of two to determine the

non-negative integer p such that

2p-I < x _<2p. (4.3)

From this definition of p it follows that

2 (p-l)/2 < Y _<2P/2

so that, since one of the numbers (p-l)/2

z0 = 2qbe an integer, we pick

to y, where

the largest integer not exceeding

pattern used to calculate the

define go by

go =
2

x - z_ .
0

(4.4)

and p/2 must

as our first approximation

p/2.

(4.5)

Following the

in Theorem 3.1, we now

From this definition and from the definition of z 0 it

follows that

so that

2 2

2P-I - (2P/2) < go _< 2P - (2_P-I)/2) _

Ig01 _< 2P-I"

Recalling now the definition of w 1

we replace our first approximation z 0

in Theorem 3.2,

to y with z I = 2 q-j,

120

where

0 >j

(As before, we define

that

where M

system.)

by

we have

and

since n

and gl

system.

j is an integer satisfying

• (p-n-l)/2. (4.6)

n to be the positive integer such

2n < M/2 <2 n+l, (4.7)

is the product of the moduli in the residue number

Replacing also go by gl' where gl is defined

2-2 2
gl = J .x - z I ,

gl = 2-2j'Igol _ 2P-12n-p+I = 2n < M/2

Zl _ 2P/2 - 3 < 2(n+l)/2 < 2n < M/2,

is clearly greater than one. Hence, both z 1

are integers within the range of our residue number

note that the differential

we should correct gl by

If gl = 0, then z I =

actly equal to y, the square root of x.

dg 1

dg 1

tain the desired approximation to

x • 2 -2j so that Zl. 2J is ex-

If gl _ 0, we

of gl is -2Zl°dZ I. Since

to reduce gl to zero to oh-

y, we should have

dgl = -gl

121

or equivalently,

dz I = gl/2Zl,

which is essentially how Y2 is obtained from Yl in the

Newton-Raphson iteration. Here, however, we avoid the divi-

sion by 2zI by approximating z I with 2s-3, where

s : 12_- I , (4.8)

by approximating Igll with 2tl, where t I is the non-negative

integer satisfying

2tl -I < Igll _< 2tl,

and by approximating dz I with

2ti/2.2 s-j = 2tl+j -s-I

Thus, we define our second approximation z2

z 2 = zI +

to y by

(sign gl) "2 tl+j-s-I

As for Theorems 3.1 and 3.2, repeating this reason-

ing for z2, z 3, and so forth leads to an iterative procedure,

a "flow chart" of which is given in Figure III. We now sum-

marize this procedure in

Theorem 4.1 (Square Root Algorithm) - Let x b__ee_ posi-

tive integer in a residue number system in which all inteqers

are between -M/2 an___dd+M/2. Le___tt p, q, j, n, and s b__e

inteqers satisfyinq (4.3), (4.5), (4.6), (4.7), and (4.8),

respectively. Le____t z be the inteqer defined as follows:

Fiqure III- Square Root Alqorithm

E_1 "n_ J

A

t
_, _,'-_

,>

122

/

......_ 123

• Se___t z I = 2 q-j an___ddcalculate gl by

2-2 2= J. x - z. .
gi 1

(4.9)

.

If gi = 0 for any i, set z = z..

If gi _ 0, __let t.l be the non-neqative inteqer

satisfving

2ti -I < Igil < 2 ti.

If t. > s - j, calculate zi+ 1 from
1

zi+ l = z.1 + (sign gi) -2 ti+j-s-I

an___ddreturn to step 1 t__oocalculate gi+l"

(4.10)

(4.11)

3. If t < s - j, set z = z..
-- i _ 1

4 If t = s - j, set z' = z. + (sign gi) "i and

calculate g x - z' . I___f g < gi '

set z = z'; otherwise, set z = z..

Then z satisfies

.x - z < 1/2;

that is, z i__ssth___eenearest inteqer to y-2 j where y ist

th___eepositive square root of x.

Proof: The proof of this theorem is by induction, the

idea being to show that t. decreases as i increases or
1

else that an exact approximation z. to the square root is
l

obtained (in which case ti+ 1 is not defined)• In order

to show this, it is also necessary to establish upper and

124

lower bounds on the integers

duction hypotheses are

z.. In particular, our in-

and

where s

ti < ti-i < p - 1 (4.12)

2-J2 s-I _ z. < 2-J2 s, (4.13)
1

is defined by (4.8). Since we have already

shown in the remarks preceding the theorem that

Igll 2p-1

and since, by definition,

z I 2-J2 s-I == or z I 2-J2 s

according as p is odd or even, it follows immediately

that the induction hypotheses are satisfied when i = i.

Let us now assume that these hypotheses are satisfied when

i is some integer k _i and let us show that this implies

that (4.12) and (4.13) hold for i = k+l.

from

We begin by obtaining bounds on 2-Jy _ Zkl. First,

(4.4), (4.8), and (4.13), we have

2-J2 s = 2-J2(P +I)/2 = 2-J[2(P -I)/2 + 2 (p-I)/2]

= 2-J2(P -I)/2 + 2-J2 s-I < 2-Jy + zk

_< 2-J2 p/2 + 2-J2 s = 2-J[2 p/2 + 2 (p+I)/2

< 2-J2(P+3)/2 = 2-J2s+l,

when p is odd; and similarly,

125

2-J2 s = 2-J2P/2 < 2-J[2 (p-I)/2 + 2 (p-2)/2]

= 2-J2(P-I)/2 + 2-J2 s-I < 2-Jy + zk

_<2-J2 p/2 + 2-J2 s = 2-J[2 p/2 + 2p/2]

= 2-J2(P+2)/2 = 2-J2s+l,

when p is even. Hence, we have

2-J2 s 2-Jy + zk << 2-J2 s+l " (4.14)

From this, (4.9), and (4.10), it follows that

2 tk _ 12-2Jx _ Zk2 I = (2-Jy + Zk), 12-Jy

> _ l
and that

2tk -I < 12-2Jx _ Zk2 I : (2-Jy÷ zk).12-Jy_ zkl

< 2-J2s÷l.12-Jy_ zkl

Hence, we have

2tk+j -s-2 < 12-Jy _ Zkl < 2 tk+j-s (4.15)

At this point it is necessary to split our induction

proof into two cases. In the first of these cases - Case

A - we shall assume p to be an odd integer, and in the

second case - Case B - we shall assume p to be even.

In Case A

upper bound given in (4.13)

than t k whenever Zk+ 1 and

of 2-Jy.

we shall show first that
Zk+ 1 is less than the

and then that tk+ 1 is less

z k are on "opposite" sides

Next in Case A, we shall show that tk+ 1 _ tk

126

by (4.11)

bound given in

duction for Case

when

(4.13). Finally, we shall complete the in-

B by showing that (4.12) also holds

zk < 2-Jy < Zk+ I. We proceed now with

Case A. If Zk-2J > y, then gk <
0 and

Zk+ 1 = zk - 2tk+j -s-I < z k _ 2-J2 s

and the induction hypothesis (4.13). And if

whenever Zk+ 1 and zk are on the same side of 2-3y,

which will complete the proof of (4.12) for i = k+l.

Finally, by establishing a slightly stronger result than

(4.12) for i < k, we shall complete the induction for

Case A by proving that Zk+ 1 is greater than the lower

bound in (4.13). In Case B, our proof will be essen-

tially the same as in Case A, but because the different

value of s in Case B yields different bounds on zk

in our induction hypothesis (4.13), it will be necessary

to rearrange the steps of the proof somewhat. In parti-

cular, we shall show first in Case B that Zk+ 1 is grea-

ter than the lower bound given in (4.13) and then we shall

establish (4.12) for the situation in which zk > 2-Jy.

Next, we shall show that (4.12) holds for i = k+l when-

ever zk and Zk+ 1 are both less than 2-Jy and then, by

again establishing a slightly stronger result than (4.12)

for i < k, we shall show that Zk+ 1 is less than the upper

zk

Hence,

(4.13)

-2 j < y, then by (4.4) and (4.11)

Zk+1 = zk + 2tk+j -s-I < 2-Jy +

_< 2-J2 p/2 + 2-2J2 j+(p-5)/2

we have

2P-l+j- (p+3)/2

= 2-J2 (p-5)/2 (25/2 + I)

= 2-J2 (I)+1)/2 = 2-J2 s "

s

< 2-J2(P-5)/2 ,''(23)

(4.16)

Zk+ 1 < 2-_2 , which shows that the upper
bound in

holds for i = k+l.

127

Let us now consider what happens when (2-j
y - zk)

and (2-Jy - Zk+ I) have different signs - that is, when

• .23
z k 2 j and Zk+ 1 are on opposite sides of y. It then

follows from (4.11) that

2tk+j -s-I > 12-Jy _ Zkl

so that, by (4.15), we have

2-Jy _ Zk+ll
= 2tk+j -s-I

< 2tk+j -s-I

= 2tk+j -s-2 .

Hence, since

°

Zk+ 1 < 2-32 s, it follows that

: (2-Jy ÷ Zk÷l). 12-Jy_ zk÷ll

< 2-J2s+l.2tk +j-s-2 = 2tk -1 (4 •17)

Therefore, if zk. 2 j and Zk+ 1 -2 j are on opposite sides

of y, then it follows that tk+ 1 _< tk - i.

On the other hand, if
0

(2-3y - Zk) and
(2-Jy _)

Zk+l

have the same sign, then by (4.11) and (4.15)

12-JY - Zk+ll = 12-JY - zk I - 2tk+j-s-i

< 2tk+j -s _ 2tk+J -s-I

= 2tk+j -s-I "

-J2 s, it follows that
Hence, from this and from Zk+ 1 < 2

< 2-J2s+l.2tk+j-s-i = 2tk.

128

It now follows that
tk+ 1 < t k whenever

we have

are on the same side of

(4.18)

Zk'2J and Zk+l.2J

y. Coupling this with the result

of the preceding paragraph completes the proof that (4.12)

is satisfied for i = k+l.

Now all that remains to be shown for Case A is that

the lower bound in (4.13) holds for i = k+l. In order

to show this we first note that if we have = t. for
ti+l i

any i < k, then it follows from (4.11) that

z.+,_z = z. + (sign g).2ti+j-sii i

But then by (4 15) it follows that zi+ 2 and z." l

) are on opposite sides of 2-Jy, so that by
Zi+l

we have ti+ 2 _ t.l - i.

ly stronger result than

(and

(4.17)

Hence, we have established a slight-

(4.12): namely, that for any posi-

tive integer i < k,

129

ti+ 2 _<ti+ 1 and ti+ 2 < t.l - i, (4.19)

where t i _ p - i. It is this stronger form of (4.12)

2-J2 s-I and thus com-that enables us to prove that Zk+1

plete the induction.

If Zk+1 > zk -

induction hypothesis

that is, Zk-2J

(4.13) we have

< y - then by the

-j2 s-I "
Zk+ 1 > zk _ 2

But if Zk+ 1 < Zk, then it follows from (4.11) that zk

must have been greater than 2-3y. Since, by definition,

z I is less than 2-3y, there must exist a largest integer

m < k such that z < 2-3y. Then, by (4.17) we have
m

tm+ 1 < tm - i,

so that

Zk+ I zk - 2tk+j -s-I

z + 2tm+j-s-i _ 2tm+l +j-s-i
m

... - 2tk+j -s-I

>I z + 2 tm+ j-s-I
m

This follows from the fact that

_ 2tm+j -s-I

tm+l' tm+2' "''' tk-1

Z .

m

mus t

be a Strictly decreasing sequence, since otherwise, if two

of these t.'s
1

2-Jy, by

were equal, some

(4.19), for m < h <k.

zh would be less than

Since this would con-

tradict the definition of m, it follows immediately from

130

the induction hypothesis applied to z that
m

Zk+ l _ z >i 2-J2s-l.
m

This completes the proof of (4.13) for i = k+l

our consideration of Case A.

and ends

Case B. If Zk.2J < y, then

-J2s-i
Zk+ 1 > zk _ 2

by the induction hypothesis (4.13). And if

then

Zk+ 1 =

>

Zk _ 2tk+j - (p+2)/2

2-Jy _ 2-2J2tk+j-(p+2)/2

> 2-J[2 (p-I)/2 _ 2(P -4)/2]

> 2-J2(P-2)/2 = 2-J2s-l.

Hence, the lower bound in (4.13) holds for

Zk-2J > Y,

i = k+l.

Let us now assume momentarily that zk

Zk+l<Z k _2-32 s by the induction hypothesis

if

and

Zk+ i" 2 j

(4.15) that

12-Jy _ Zk+ll

.2j > y, so that

(4.13) . Then

is also greater than y, it follows from

= 12-Jy _ Zkl - 2tk+j -s-I

< 2tk+j -s _ 2tk+j -s-I

= 2tk+j -s-I

(4.11)

if

and

Hence, we have

Therefore, if

Similarly, if

(4.11) and

and that

From this we have

-- (2-Jy +
Zk+ I) . 12-Jy

< 2 -J2 s+l •2 tk+ J-s-i

-- 2 tk.

- Zk+i/

Zk > Zk+l > 2-JY, then tk+l _< tk"

zk'2J > Y > zk+l'2J, then it fOllows

(4.15) that

2 tk+J-s-i

>/2-Jy _

= 2 tk+j-s-i

< 2tk+j-s-i

= 2tk+j-s_2

(4.20)

from

Hence, if

gk+l I = (2-3y +

Zk+ I) ./2-Jy _

< 2-J2s+l •2 tk+j-s-2

= 2 tk-i

Zk > 2-3Y > Zk+ 1 then

' tk+l _< tk - i.

Zk+ 1 /

(4.21)

Now let us assume that

zk < Zk+l < 2-3y, we have

zk is less than

< 2 tk+j-s_l

2-3y. Then,

- 2tk+J-s-i

131

132

Igk+ll = (2-Jy + Zk+l),12-Jy - Zk+ll

< 2-J2 s+l.2tk+j-s-I

= 2tk.

By combining this result with (4o20), it follows that

tk+ 1 < t k whenever zk and Zk+ 1 are on the same side

-Jyof 2 . However, as before in Case A, if this happens

and if ti+ 1 = t.1
for some integer i < k, then it follows

from (4. ii) that

zi+2 = z.l + (sign gi) -2 tk+j-s

Hence, by (4.15), it follows that

-3yopposite sides of 2 so that

Case B whenever z. > 2-Jy and
1

zi+2

(4.19)

i < k.

and z. are on
1

also holds for

Now if z k < 2-Jy < Zk+l, let m be the largest in-

teger such that z > 2-Jy. (We know that such an m ex-
m

ists since z I > 2-Jy by definition.) Then, by (4.21)

we have

so that

tm+ 1 _< tm - 1

Zk+ 1 = zk + 2tk+j -s-I

= z _ 2tm+j-s-1 + 2tm+l +j-s-i + ...
m

... + 2 tk+j-s-l. (4.22)

Since tm+l, tm+2, ..., tk_ 1 must be a strictly decreasing

133

sequence - otherwise for some h such that m < h <k

we would have zh > 2-Jy, contradicting the definition of

m - it follows from (4.22) that Zk+1 < Zm, which gives

-j2 s
Zk+1 < 2

by the induction hypothesis

as in (4.21) we have

and

(4.13) applied to z . Thusm

2-Jy _ Zk+ll < 2tk +j-s-2

Therefore, tk+ 1 < t k - 1

opposite sides of 2-Jy.

gk+ll < 2-J2s+l'2tk+j-s-2 = 2tk-l"

whenever zk and Zk+1

This proves (4.12) -

are on

and also

(4.19) - for Case B.

Finally, since

ever Zk+1 < zk or whenever

have already shown in (4.22)

zk < 2-Jy < Zk+ I, it follows that the upper bound in

holds for i = k+l, which completes the proof for Case

Zk+1 is clearly less than 2-32 s when-

zk < Zk+1 < 2-3y, and since we

-J2 s whenever
that Zk+1_ 2

(4.13)

B .

By the induction principle it follows that (4.12) and

(4.13) are satisfied for every positive integer i. Since

we proved the result (4.19) in both Cases A and B, we

have actually shown that the z.'s converge to y with a
l

134

decrease in the error by at least a factor of two for every

two "iterations." Finally, if t. < s-j,
l

then it follows

from (4.15) that

12-j y - zil < 2ti+j-s < 2 -1 = 1/2.

But if t. = s-j,
l

so that z.
l

then we have

2-Jy - zil < l,

differs from the desired r_sult

1. The final comparison between gi and g'

z by at most

as prescribed

in step 4 of the _eorem assures us that whichever of z.1

and z' is closer to y is the final value assigned to z.

Note that since we are approximating the square root of an

integer, the difference between z and

be strictly less than 1/2, and hence

from

2-Jy will always

z.2 j will differ

y by less than 2 j-1. This completes the proof of

Theorem 4.1.

As in the division algorithm of Theorem 3.2, the

exponent j in Theorem 4.1 may be decreased in successive

"iterations." In particular, since ti+ 1 _ t._ for every

i and since a decrease of one in j causes an increase

in

the

gi+l

(i+l)st iteration by as much as

1 2 •

by a factor of four, j may be decreased in

(4.23)

135

However, since z i _<2s-j by

that

(4.13), it foilows

Thus, we set

zi < 2n < M/2 -

that is, z. is within the computer range - whenever

is not less than

D

]min s - n.

in Theorem 4.1j = 0

(4°24)

to obtain the nearest

integer to the positive square square root of a positive

integer or we may make j negative and obtain a more

accurate approximation to the root. If we decrease j to

Jmin' we obtain the most accurate approximation to the root

that is consistent with keeping the integer z in Theorem

4.1 within the range of the residue number system. And

regardless of the j we use

0 > j _ Jmin - Theorem 4.1

in the final approximation to the root is less than 2 j-I

- as long as it satisfies

guarantees that the error

As an example of using this procedure to obtain an

approximation to a square root of an integer, let us now

calculate the most acc_te approximation z-2 j to the

positive square root y of x = 627,323 consistent with

keeping z within the range of the residue number system

whose moduli are 2, 3, 5, 7, ii, 13, 17, and 19. From

(4.3) and (4.7), respectively, we have

p = 20 and n = 22,

(4.6), (4.8), and (4.24), respectively,and by (4.5),

we have

p = i0, j = -i, s = i0,

Then, our first approximation to

z 1

gl from (4.9),

- (2048)

is

= 2q-j = 211 = 2048

and Jmin = -12.

2-]y

and, calculating

2
gl = 2 .627,323

From thZs and

t I = 21,

we have

2
= -1,685,012.

(4.10), (4.23), and (4.11), we obtain

wI = 0, and z2 = 2048 - 29 = 1536.

The results of the calculations for the remaining

iterations are given in Table V.

136

Note that in the fourth iteration of this calculation,

we have

t 4 = 14 = s - j.

However, since

j 6 -4 > -12 = Jmin

at this point, we do not proceed with step 4 of Theorem

4ol. For, _hen we decrease j by !W4 = 4, we find that

2w2t4+j-s-I is indeed an integer, so that we may continue

with a fifth iteration. Moreover, again in the seventh

_o
.,-I

,--I

ui

c

(1)

O

-,-I

ro

E_

_O

D,..
co
o

o

Oh
D--

II

CXl

li

N

A

N
v

-r'_
cq

-,-I
5,1

o • • •

o o o o o_ d J g
0 0 0 0 0 kO o_ o_
0 0 0 0 0 _ 00 kO
0 0 0 0 Lr) CO _- _-I

• 4 " 4 " " _ 'kO 0 cO _ r_
!'-. _ 0 _0 ,--I o,I t_l o,I
u_ GO 0 o,1 _ o'_ _ o'_

cO _ c_ o,1 c_ c_ o4
0 u_ _0 _0 _0 _0 _0 _0

o o o o o _ _
0 o 0 0 0 _I O_ co
O O O O u_ _O o u_
0 0 0 0 c_I 0 ,-I
O o O O ,-I Oh D'.. I'--
O 0 O O c_ c_ c_ c,_
O O O O O O O O

c_1 _O O oh o_ _ oh o_
O D- 00 r'.. _ r-- I".- D...
,-I

•,-4 ,-; O0 O _1' O o cO I
40 _ ,-I c_l ,-I c_ C_l ,-t I

,-I oh oq
O 0_ o_

cO _ ,-I
_O ,-I o0

!

"n

O
,-!

,-I

(D '_ c_i D...
o,I _o 0r_ I.Q
u_ O Oh ,-I

c_1 u'l o,I
_,D I"- C_l O0

I

I I I I I I
0

I I

CO _D O C_l O _I' _O u'l
1' c O r-.- _.D o,i _P GO
O in _I' _O P- u'_ O ,-I

,-I O O ,-I _'_
c_ _ GO c_

g

g
p..
o

o
0
0

c;
II

O

P-1

&

.4

,-I
O
O
o

d
U

I

II

,--4
I

"r"_

137

138

iteration we have

but since

t 7 = 18 < 20 = s = j,

we proceed as in step 4

z' = 3,244,185.

=
we set z = z'

z.23

t 7 + w 7 = s - j

of Theorem 4.1 to calculate

Since

2,841157 < 3646,912= 22w7197

to _ain the final approximation

= 3,244,185.2 -12 = 792.0373535...

which differs from y = 792.0372465... by less than

< -13
= 2 = 0.0001221

Thus, when j is being decreased from iteration to

iteration, the comparisons made between t. and s - j
1

in steps 2, 3, and 4 of Theorem 4.1 should be replaced

by comparisons between t. + w' and s - j, where w'
1

is the value of j in the ith iteration minus the value

of j desired in the final result.

As the above example suggests, the square root al-

gorithm of Theorem 4.1 often yields successive approximations

converging to the square root y at a rate considerably

faster than the minumum of one binary "bit" of accuracy

per two iterations established in the proof. _nd as we

139

shall see in the next chapter, this algorithm does indeed

produce in practice a sequence of approximations converging

at a rate several times faster than is predicted in the prod,f0

Moreover, it is interesting to note that an estimate of the

number of operations necessary in using floating-point arith-

metic in conjunction with the Newton-Raphson method in a mod-

ular arithmetic computer to calculate an approximation to the

square root of 627,323 with the same accuracy as obtained in

the above example indicates that the Newton-Raphson method re-

quires nearly three times as much computational effort as the

above algorithm.

C. Floating-Point Operations in a Residue Number System.

Clearly, the algorithm of Theorem 4.1 can be utilized to cal-

culate approximations to the positive square root of a positive

number given in floating-point form in a modular arithmetic

• .2kcomputer In particular, if the positive number x = u

is given in the normalized floating-point form specified in

the preceding chapter (pp. 108-109), then an approximation to

the square root of x may be calculated as follows: If k

is odd, set v = 2u and h = (k-l)/2; if k is even, set

v = u and h = k/2. Next, calculate an approximation z to

the square root of v , using Theorem 4.1 and j =- ,

140

where m is the integer satisfying
i

(3.22). Then, y = z.2 ,

where i = j + h, is the desired floating-point approximation

to the positive square root of x.

To illustrate the use of this procedure in approximating

a square root of a number in floating-point form as well the

use of some of the other floating-point operations described

in the preceding chapter (pp. 109-113), let us now show how

these operations can be used to calculate the greater root of

2
x - 5x - 7 = 0

in a residue number system whose moduli are 2, 3, 5, 7, ii,

13, 17, and 19. From (3.22) we have m = i0, so that the

normalized floating-point representations of the coefficients

in the above equation are

a = 1 = 1024.2 -10 ,
-7

b = -5 = -640-2 ,

-7
and c = -7 = -896-2

Using floating-point arithmetic operations to evaluate

-b + _b 2 - 4ac
X _ 0

2a

we first calculate 2a. Since the constant "two" in nor-

malized floating-point form is
-9

1024-2 , we multiply

1024-2 -9 by 1024-2 -I0 as outlined in the description of

floating-point _ multiplication in the preceding chapter (p.l12).

-17
We obtain 1,048,576-2 which, when normalized, gives

141

-92a = 1024- 2 .

In a similar manner we calculate

2c = -917,504.2 -16 =

-14
(2a)-(2c) = 4ae = 917,504-2

-6
-896.2

-5= -896 -2

and

b 2 = 409,600.2 -14 = 800.2 -5 "

Next, we subtract 4ac from b 2 as outlined in the preceding

chapter under floating-point addition and subtraction (pp. lll-

112) and obtain

b 2 - 4ac = 1696-2 -5 = 848.2 -4

Approximating the square root of b 2 - 4ac as outlined above

gives

_b 2 - 4ac = 932-2 -7 .

Subtracting b from this, we obtain

-b + /_b 2 - 4ac = 1572.2 -7 = 786-2-6.

Finally, dividing this result by 2a as outlined in the

preceding chapter (p. i13), we obtain

x = 786-2 -7 = 6.140625,

which is our computed approximation to the solution

x - - 6.140055
2

Thus, we have shown how modular arithmetic computers can be

used to add, subtract, multiply, divide, and approximate square

roots in either fixed-point or floating-point arithmetic.

142

While the square root approximation procedure given in

Theorem 4.1 above is somewhat complicated and while it may

converge rather slowly in some instances, the results of

extensive trial calculations using this procedure indicate

that it converges sufficiently rapidly to be more efficient

- on the average - than using floating-point arithmetic

and the Newton-Raphson method and more accurate than using

fixed-point operations with the Newton-Raphson method in

modular arithmetic computers. To examine in more detail

the practical behavior of this square root algorithm, let

us now turn our attention to the results of those trial

calculations.

CHAPTERV

COMPUTERSIMULATION

A. Simulation Proqrams. In order to obtain a

better idea about how the division and square root

procedures of Theorems 3.2 and 4.1, respectively,

might behave in practice, two simulation programs

were written to perform those procedures on the IBM

7090 computer. Under the control of the input data,

these programs perform "typical" divisions and square

root approximations, record the amount of computation

required for each, and check the accuracy of each

approximation obtained. Through the use of these pro-

grams, it is possible to compute several thousand

quotients and square roots in a rather short time, so

that detailed information about the practical be-

havior of the division and square root procedures can

be obtained without resorting to hours of laborfous

hand calculations. For simplicity in programming,

most of the calculations in both the division and the

square root simulation programs are performed in

143

normal 7090 (floating-point) binary arithmetic. The

simulation programs use residue arithmetics only when

the error estimates f.
l

by (3.16) and (4.11)

the special truncation and overflow properties of

residue number systems are necessary to obtain the

correct values for these quantities. To calculate

and gi defined respectively

are to be calculated_ since

f ,

1

and gi in the specified residue number systems, the

simulation programs use special subroutines_ Other

subroutines are also used to simulate the use of the

stored table of powers of two.

144

The division simulation program, written partly

in FORTRAN II and partly in FAP, accepts as input

data the moduli tobe used and the number of divisions

to be performed° For each division, it obtains a di-

vidend and divisor by uSing random digits _from a "random

number" generating subroutine to give the number of

digits in|the dividend, the number of digits in the

divisor, then the dividend itself, and finally the

divisor itself. (Since the division procedure be-

haves no differently for positive or negative numbers,

only positive dividends and divisors are used.) Using

-_'0 "'00_

e_?°° 0

145

146

the "randomly generated" dividend and divisor, the program

next begins the division procedure described in Theorem 3.2

and "iterates" with that procedure until it obtains the most

accurate approximation to the quotient consistent with the

range of the residue number system being used. Finally,

the program checks the accuracy of the approximation ob-

tained and the number of "iterations" which were required

to attain it. After printing out the dividend, the

divisor, the approximation obtained, and the information

about the iterations required and the accuracy obtained,

the division program returns to the "random number" sub-

routine to calculate the dividend and the divisor for the

next division. Table VI contains a sample of the output

generated by this simulation program.

The square root simulation program operates in

much the same way as the division program, except that

the "random number" generator is not used. Instead,

the program reads from punched cards the smallest and

largest positive numbers whose square roots are to be

calculated and the increment to be used in obtaining

other numbers which are between the smallest and largest

and whose square roots are also to be calculated. For

o
-,-I
4J

4J

o

H

O
,"4

c'N

II

4J
0
0

0
0

_O
,-4

c_ C_

t_

O
O ._

0!' O
•. O

(:__ O_ (D ¢0 CO 0_,(:0 CO O_ O_ O0 (:_,[-- O0

0

_J

,.-4
0

_J
U

0
0 I _ o_ o_ O o_ ,--i ,-.i o i_ o O _r_ ,,_

O c_ u'_ _1, o_ I_ 0D ,-I 00 O O_ o_ o_i _ 00 O

N r_ o') O_ L_ 0 _:)C_I OO '_I'0 _0 CXl r_ (v) I

fxl
_o P... _'_ _o _ o_ 00 ,-I o o m o_ ',_ _o _o
_ _ o_ o_ e_ _o _ o'_ o o_ o_ o_ u'_ .-t c_ II

,-I ,'-I ["- _ _ '_1_ u'_ ,-I 0O o_ o'_ o"_ I'_ o_1 o 0
_ o'_ o_ ,.-I ,-I ',_ o_ l_ I_ 1"_ o o'_ c'q o"_ ,-1 -,-I
o _,'_ ko c0 o_ ,-I ,_D O 00 ,-I P-. ,..D c_ _O _O -I_

,.O 00 c_ _D P.. r.-. ,_D Lr_ _'_ O r_ ,_ o _- _ 4-_
e,_ u_ r_ 00 o_ o ,-I o,I o'_ ,,_ _1_ Lr_ _ _O I_ -,-I

,--I ,--I ,--I ,--I ,--I ,--I ,--I ,--I ,--I ;--I

II II II II II II II II II II II II 11 II II ¢_

,--I ,--I.,--I _-I _II ,--I ,II ,--I _II ,-I ,--I _-I _-I _1 _--I
I I I I I I I I I I I I I I I 4-1

-,-4

O_ i_. O_ ,-.I 0.1 _"- p.. OO OO 0"_ O_ 0 0 0 ,--I

0

147

148

each of these numbers, the program approximates the positive

square root by the procedure described above in Theorem

4.1, "iterating" over and over until the best approximation

to the square root consishent with the range of the number

system is obtained. After checking the accuracy of the

approximation and the number of "iterations" required,

the program prints out the number whose square root

was approximated, the approximation itself0 the square

of the approximation (for comparison with the original

number whose root was calculated), and the information

about the accuracy obtained and the iterations required.

Finally the program adds the aforementioned increment

to the number whose root was just approximated and ob-

tains the next number whose square root it is to calculate.

Table VII contains a sample of the output generated

by this simulation program.

B. Simulation Results. The simulation programs

were run on the IBM 7090 computer at the University

of Maryland's Computer Science Center. Eleven different

sets of moduli, ranging from 2, 30 50 and 7 to 8,

25, 27, 29, 37, and 47, were tried to determine whether

or not changing the residue number system - that is,

the computer range - has any effect on the behavior

of the division and square root procedures. In general,

changing the moduli produced no noticeable effect, at

least in the average rates of convergence for the

two procedures. The accuracy of the approximations

increased as the computer range increased;but then, so

did the number of iterations.

149

In all, over 6400 divisions and 6400 square

roots were calculated by the simulation programs. The

total computing time was 35-40 minutes. For the

divisions, from 1 to 25 iterations were required

for each approximation, while for the square roots

the number of iterations ranged from 2 to 21.

The accuracy attained in the approximations was,

in general, higher for the divisions than for the square

roots. For example, slightly over 10% of the division

approximations were exactly equal to the quotient,

while only 0.33% of the square root approximations

were exact. Also the accuracy of the "non-exact"

approximations was greater for the divisions than

for the square roots, the approximations being often as

great as 20 binary bits "more accurate" than predicted

150

in Theorem 3.2 for division while seldom more than 6

or 7 bits more accurate than predicted in Theorem 4.1

for square roots.

The most significant results obtained from the

simulation programs were that the division and square

root procedures converge, on the average, considerably

more rapidly than is suggested by the proofs of

Theorems 3.2 and 4.1, respectively. In particular,

for all of the more than 6400 divisions performed,

the average rate of convergence for the division pro-

cedure was 3.021 binary bits of accuracy per iteration,

and for about the same number of square roots, the

square root procedure converged at an average rate of

2.617 bits per iteration. For the division program,

the rate of convergence obtained in the simulation runs

ranged from as low as the minimal 1 binary bit of

accuracy per iteration predicted in the proof of Theorem

3.2 to as high as 8.2 bits per iteration. In the

square root simulation, the rate of convergence was

as low as 1.2 binary bits per iteration and as high

as 12 bits.

Clearly, these results from the simulation programs

emphasize the practical value of the division and square

root procedures developed in Theorems 3.2 and 4.1.

Not only do these procedures converge considerably more

rapidly in practice than is proved in the above theorems,

but also the computational effort they require to ob-

tain the approximations is considerably less than for

any other division or square root procedure yet devised

for residue number systems.

151

CONCLUSION

In this thesis we have treated four problems: how to

compare the magnitudes of two numbers, how to detect additive

and multiplicative overflow, how to divide, and how to

approximate square roots in residue number systems. In

Chapter I, we showed how the ordinary positional notation

for integers can be extended to a mixed-radix notation

which can then be used to determine the larger and smaller

of two numbers in a residue number system. In Chapter II,

we used this comparison technique to help determine whether

or not overflow occurs in addition, subtraction, and multi-

plication in a residue number system. We gave simple

necessary and sufficient conditions for additive overflow

and we presented two methods for detecting multiplicative

overflow. For the latter multiplicative overflow detection

procedure, we introduced the use of a table of powers of two,

which we then also used in Chapters III and IV to implement

respectively a division algorithm and a square root algo-

rithm for residue number systems. In Chapter III, we

showed how the division algorithm can be used to provide

152

153

approximations to a quotient ranging from the nearest integer

to the most accurate approximation possible for the residue

number system being used. We also showed how the division

algorithm may be applied to provide modular arithmetic com-

puters with the capability for performing floating-point

arithmetic operations. In Chapter IV, we presented an algo-

rithm in which division can be avoided while approximating

the square root of a number in a residue number system, and

we showed how this algorithm can be used to obtain an approx-

imation to the square root with any degree of accuracy from

the nearest integer to most accurate approximation possible

for the residue number system used.

In each instance, we have provided examples illustrating

how the procedures given are used in actual computations and

we have explained how the necessary computations for these

procedures can be performed conveniently in a modular arith-

metic computer. Finally, in Chapter V, we described how a

conventional digital computer was programmed to simulate the

use of the division and square root algorithms in a modular

arithmetic computer in performing trial calculations. From

the sample calculations performed by the simulation programs,

we found that the convergence of these methods is consider-

ably faster in practice than was indicated by the proofs of

the pertinent theorems in Chapters III and IV. Thus, we

have not only presented solutions to the four problems we

considered, but we have also shown that these solutions

are workable in practical applications.

154

At this point it might be well to ask what problems

related to the use of residue number systems in digital

computers have we not solved. In addition to the many prob-

lems related to the electronic engineering and design of

modular arithmetic computers0 there are still numerous open

"theoretical" questions, of which we shall mention just a

few. First, we have not considered in the preceding chap-

ters whether or not a table of powers of three or four or

some other positive integer can be substituted for the table

of powers of two which we used in the multiplicative over-

flow detection, the division, and the square root pro-

cedures. Because of the reliance on the specific properties

of the powers of two at various c_itical points in the proofs

related to these procedures, it is the authorUs opinion that

using a table of powers of an integer greater than two would

complicate c_Dsiderably any extensions of the procedures

given. Nevertheless, such extensions, or entirely different

methods,•_re no doubt possible and would probably converge

155

faster than the methods given above for division and square

root approximation. Next, it might be inquired whether or

not the square root algorithm given in Chapter IV can be

extended to provide approximations to real roots of degree

higher th_n two or, more generally, whether the algorithm

can be extended to approximate real roots of polynomial

equations. Such extensions, or methods entirely different

from that given above, are obviously quite desirable, but

in view of the complexity of the proof of TheOrem 4.1, the

author feels that finding them would be rather difficult.

Finally, instead of trying to force residue number systems

to perform calculations for problems based in the real or

rational number systems, it might be asked whether or not

there exist problems - in particular, in number theory -

which can be stated directly in terms of residues and

congruences and for which a digital computer using a residue

number system would be better suited than conventional

digital computers. If such problems exist, the author is

presently unaware of them, but he feels that learning a

sufficient amount of number theory to carry out such an

inquiry should be rewarding enough to make the whole effort

worthwhile.

BIBLIOGRAPHY

Since much of the work on the application of residue

number systems to digital computers has been published in

rather obscure journals and reports, the author has attempted

to include in this bibliography all references known to him

and pertaining %o the use of residue number systems in digital

computers. To those interested in examining some of these

references, the following information may be of assistance.

References [i], [ii], [13], [17], [19], and [32]

below are United States Air Force Technical Reports which

were submitted under contracts with the Electronic Tech-

nology Laboratory, Aeronautical Systems Division, United

States Air Force, Wright-Patterson Air Force Base, Ohio.

Qualified requesters may obtain copies of these reports

from the Defense Documentation Center, Cameron Station,

Alexandria, Virginia 22314. These reports are not, in

general, part of the "open" literature.

156

157

/ • F

The journal, Stroje Na Zpracovani Informaci, referred to

in _eferences [23], [24], [28], [30], and [31] 10e low', i_ Im/b -

li_h:ed _ :the Lab orato_ • . , vM_temat I _kych. S:tro Su_%_0_esko s 1 oven sk a

Akademie V_d (Laboratory of Mathematical Machines, Czecho-

slovakian Academy of Sciences), Prague, Czechoslovakia. The

title means "Machines for Processing Information. " Sbornik

I-VIII (Volumes 1-8) of this journal are available at the

Library of Congress under call number QA76.S84.

[1]

[2]

[3]

[4]

[5]

[6]

Aiken, H.H. and Semon, W. Advanced Digital_Computer

Logic. ASD Technical Report No. 59-472. Wright-

Patterson Air Force Base, Ohio: Aeronautical

Systems Division, United States Air Force, 1959.

Cheney, P.W. "A Digital Correlator Based On the Resi-

due Number System," IRE Transactions on Electronic

Computers, EC-10 (March, 1961), pp. 63-70.

Dickson, L.E.

Vol. II.

1952.

History of the Theory of Numbers,

New York: Chelsea Publishing Company,

Eastman, W.L. "Sign Determination in a Modular Number

System," Proceedings of a Harvard Symposium o__nn

Digital Computers and Theix Applications, 1961,

pp. 136-162. Cambridge, Massachusetts: Harvard

University Press, 1962.

Garner, HoL. "Error Checking and the Structure of

Binary Addition." Ph.D. Dissertation. Ann

Arbor, Michigan: University of Michigan, 1958.

. "The Residue Number System," Proceedings o__f

th____eWestern Joint Computer Conference, 1959,

pp. 143-153.

158

[7]

[8]

[9]

[i0]

[ii]

[12]

[13]

[14]

[15]

[16]

• "The Residue Number System,"

actions on Electronic Computers,

1959), pp. 140-147o

IRE Trans-

EC-8 (June,

Griffin, H. Elementary Theory of Numbers°

McGraw-Hill Book Company, 1954o

New York:

Guffin, R.M° "A Computer For Solving Linear Simul-

taneous Equations Using the Residue Number System,"

IR___EETransactions o__n_nElectronic Computers, EC-II

(April, 1962), ppo 164-173o

Hardy, GoHo and Wright, E.M. A__nnIntroduction to the

Theory of Numbers, 4th ed. London: Oxford Uni-

versity Press, 1960o

Harvard Computation Laboratory, Harvard University.

Notes on Modular Number Systems° ASD Technical

Report No. 61--12o Wright-Patterson Air Force

Base, Ohio: Aeronautieal Systems Division,

United States Air Force, 1961.

Hildebrand, F.B. Introduction to Numerical Analysis.

New York: McGraw-Hill Book Company, 1956o

Information Systems Laboratory, University of Michigan.

Residue Number Systems for Computers° ASD Techni-

cal Report NOo 61-483. Wright-Patterson Air Force

Base, Ohio: Aeronautical Systems Division, United

States Air Force, 1961.

Jacobson, No Lectures i_n_nAbstract Algebra, Volo I.

Princeton, New Jersey: Do Van Nostrand Company,

1951o

Keir, YoA., Cheney, P.Wo, and Tannenbaum, Mo "Division

and Overflow Detection in Residue Number Systems,"

IRE Transactions o_n_nElectronic Computers, EC-II

(August, 1962), pp. 501-507o

,!

Lindamood, G.Eo and Shapiro, Go Magnzt_d_:_ompari-

son and Overflow Detection in Modular Arithmetic

Computers, " SIAM Review, V (October, 1963) ,

pp. 342-350°

159

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Lockheed Missiles and Space Company. Modular Arith-

metic Techniques. ASD Technical Report No. 62-686.

Wright-Patterson Air Force Base, Ohio: Aeronautical

Systems Division, United States Air Force, 1962.

Rozenberg, D.P. "An Investigation of the Algebraic

Properties of the Residue Number System." Ph.D.

Dissertation. Ann Arbor, Michigan: University

of Michigan, 1961.

Scope, Incorporated• Computer Applications of Residue

Class Notations. ASD Technical Report No. 61-189.

Wright-Patterson Air Force Base, Ohio: Aeronautical

Systems Division, United States Air Force, 1961.

Shapiro, G. "Gauss Elimination for Singular Matrices,"

Mathematics o__fComputation, XVII (October, 1963),

pp. 441-445.

Shapiro, H.S. "Some Notes on Modular Arithmetic and

Parallel Computation, " Mathematics o__f Computation,

XVI (April, 1962), pp. 218-222•

• Private communication. May, 1962.

Svoboda, A. "Application of the Korobov Sequence in
l, t 0;

Mathematical Machines, Stroje Na Zpracovanz

Informaci', Sborni'k III (1955), pp. 61-76 (1956)•

. "The Rational Number System of Residual
I .l •

Classes," Stroje Na Zpracovan± Informaci', Sbornik

V (1957), pp. 9-37.

"The Numerical System of Residual Classes in

Mathematical Machines," Proceedinqs: Conqreso

Internacionale d__e Autom_tica, Madrid, 13-18

October 1958, pp• 388-397• Madrid: Instituto

de Electricidad y Automatzca, Consejo Superior

de Investigaciones Czentzfzcas, 1961.

• "The Numerical System of Residual Classes in

Mathematical Machines," Information Processinq:

Proceedinqs of the International Conference o__nn

Information Processinq, Paris, 15-20 April_ 1959,

pp. 419-422. Paris: UNESCO, 1960.

160

[27]

[28]

[29]

[30]

[31]

[32]

Szabo, N. "Sign Detection in Nonredundant Residue
Number Systems," IR___EETransactions o__n_nElectronic
Computers, EC-II (August, 1962), ppo 494-500°

Valach, M. "Vznik Kodu A Czselne Soustavy Zbyt-

kov_ch Tr{d, °' Stroje Na Zpracov_ni' Informaci',
J

Sbornik III (1955), ppo 211-245 (1956)o

• "Abbildung der Zahlen und der Arithmetischen

Operationen in Restklassen," Aktuelle Probleme

im Rechnentechnik: Bericht _ber das Interna-

tionale Mathematiker-Kolloquium, Dresden, 22-27

November 1955, ppo 57-59. Berlin: VEB Deut-

scher Verlag der Wissenschaften, 1957o

• "The Translation of Numbers from the System

of Remainder Classes to a Polyadic System by
i ,p

Change of Scale of Period," Stroje Na Zpracovanl

Informac_ °' o, Sbornlk IV (1956), pp. 53-64

and Svoboda, A. 'Operatorove Obvody," Stroje
/ o, J

Na Zpracovanz Informacl, Sbornik III (1955),

pp. 247-295 (1956).

Westinghouse Electric Corporation. Modular Arith-

metic Computinq Techniques° ASD Technical Report

No. 63-280. Wright-Patterson Air Force Base, Ohio:

Aeronautical Systems Division0 United States Air

Force, 1963.

